Direkt zum Inhalt
Suchergebnisse 31 - 60 von 186

Allgemeines Gasgesetz

Grundwissen

  • Das Gesetz von BOYLE-MARIOTTE und das Gesetz von GAY-LUSSAC können zur allgemeinen Gasgleichung zusammengefasst werden.
  • Die allgemeine Gasgleichung besagt: \(\frac{{p \cdot V}}{T}\;{\rm{ist}}\;{\rm{konstant}}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Das Gesetz von BOYLE-MARIOTTE und das Gesetz von GAY-LUSSAC können zur allgemeinen Gasgleichung zusammengefasst werden.
  • Die allgemeine Gasgleichung besagt: \(\frac{{p \cdot V}}{T}\;{\rm{ist}}\;{\rm{konstant}}\)

Zum Artikel Zu den Aufgaben

Bremsstrahlung

Grundwissen

  • In der Anode der Röntgenröhre werden die auftreffenden schnellen Elektronen stark abgebremst. Dabei entsteht die Bremsstrahlung.
  • Die Elektronen werden im Anodenmaterial je nach Abstand zu einem Kern unterschiedlich stark beschleunigt, entsprechend enthält das Spektrum der Bremsstrahlung alle Photonenenergien bis zum Höchstwert.
  • Die Bremsstrahlung einer Röntgenröhre ist ein kontinuierliches Spektrum. Die maximale Photonenenergie bzw. die untere Grenzwellenlänge der Photonen wird dabei von der Beschleunigungsspannung bestimmt.

Zum Artikel Zu den Aufgaben
Grundwissen

  • In der Anode der Röntgenröhre werden die auftreffenden schnellen Elektronen stark abgebremst. Dabei entsteht die Bremsstrahlung.
  • Die Elektronen werden im Anodenmaterial je nach Abstand zu einem Kern unterschiedlich stark beschleunigt, entsprechend enthält das Spektrum der Bremsstrahlung alle Photonenenergien bis zum Höchstwert.
  • Die Bremsstrahlung einer Röntgenröhre ist ein kontinuierliches Spektrum. Die maximale Photonenenergie bzw. die untere Grenzwellenlänge der Photonen wird dabei von der Beschleunigungsspannung bestimmt.

Zum Artikel Zu den Aufgaben

Änderung der inneren Energie

Grundwissen

  • Eine Änderung der inneren Energie \(\Delta E_{\rm i}\) kann durch Verrichtung von Arbeit an einem Körper oder durch Übertragung von Wärme auf einen Körper erfolgen.
  • Die Änderung der innere Energie \(\Delta E_{\rm i}\) ist proportional zur Temperaturänderung \(\Delta \vartheta\) und zur Masse \(m\) .
  • Mathematisch wird der Zusammenhang beschrieben durch \(\Delta E_{\rm i}= c \cdot m\cdot \Delta \vartheta\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Eine Änderung der inneren Energie \(\Delta E_{\rm i}\) kann durch Verrichtung von Arbeit an einem Körper oder durch Übertragung von Wärme auf einen Körper erfolgen.
  • Die Änderung der innere Energie \(\Delta E_{\rm i}\) ist proportional zur Temperaturänderung \(\Delta \vartheta\) und zur Masse \(m\) .
  • Mathematisch wird der Zusammenhang beschrieben durch \(\Delta E_{\rm i}= c \cdot m\cdot \Delta \vartheta\).

Zum Artikel Zu den Aufgaben

Wärmetransport

Grundwissen

  • Wärmetransport kann auf drei unterschiedliche Arten stattfinden: durch Wärmeleitung, durch Wärmemitführung (Wärmeströmung oder Konvektion) oder durch Wärmestrahlung (Temperaturstrahlung)
  • Im Alltag treten oft mehrere Arten gemeinsam auf
  • Häufig leistet eine Transportart den mit Abstand größten Beitrag zum gesamten Wärmetransport

Zum Artikel Zu den Aufgaben
Grundwissen

  • Wärmetransport kann auf drei unterschiedliche Arten stattfinden: durch Wärmeleitung, durch Wärmemitführung (Wärmeströmung oder Konvektion) oder durch Wärmestrahlung (Temperaturstrahlung)
  • Im Alltag treten oft mehrere Arten gemeinsam auf
  • Häufig leistet eine Transportart den mit Abstand größten Beitrag zum gesamten Wärmetransport

Zum Artikel Zu den Aufgaben

Elektrizitätslehre - Formeln

Grundwissen

  • Hier findest du eine Zusammenstellung der wichtigsten Formeln aus der E-Lehre

Zum Artikel
Grundwissen

  • Hier findest du eine Zusammenstellung der wichtigsten Formeln aus der E-Lehre

Zum Artikel Zu den Aufgaben

Teilchenmodell

Grundwissen

  • Alle Körper sind aus kleinen, sich ständig bewegenden Teilchen aufgebaut.
  • Ein Körper hat unterschiedliche Eigeschaften, je nachdem ob er fest, flüssig oder gasförmig ist.
  • Je mehr ein Stoff erwärmt wird, desto mehr bewegen sich die Teilchen des Stoffes.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Alle Körper sind aus kleinen, sich ständig bewegenden Teilchen aufgebaut.
  • Ein Körper hat unterschiedliche Eigeschaften, je nachdem ob er fest, flüssig oder gasförmig ist.
  • Je mehr ein Stoff erwärmt wird, desto mehr bewegen sich die Teilchen des Stoffes.

Zum Artikel Zu den Aufgaben

Schall, Schallquellen und Schallempfänger

Grundwissen

  • Schall entsteht durch in Bewegung bringen eines Mediums, also eines Gases, einer Flüssigkeit oder einem Festkörper.
  • Schall breitet sich aus, indem sich die Bewegung ausbreitet.
  • Schall breitet sich in unterschiedlichen Medien unterschiedlich aus.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Schall entsteht durch in Bewegung bringen eines Mediums, also eines Gases, einer Flüssigkeit oder einem Festkörper.
  • Schall breitet sich aus, indem sich die Bewegung ausbreitet.
  • Schall breitet sich in unterschiedlichen Medien unterschiedlich aus.

Zum Artikel Zu den Aufgaben

Universelle Gasgleichung

Grundwissen

Die universelle Gasgleichung lautet \[p \cdot V = k_{\rm B} \cdot N \cdot T\] mit dem Druck \(p\), dem Volumen \(V\), der Boltzmann-Konstanten \(k_{\rm B}\), der Teilchenzahl \(N\) und der Temperatur \(T\). 

Zum Artikel Zu den Aufgaben
Grundwissen

Die universelle Gasgleichung lautet \[p \cdot V = k_{\rm B} \cdot N \cdot T\] mit dem Druck \(p\), dem Volumen \(V\), der Boltzmann-Konstanten \(k_{\rm B}\), der Teilchenzahl \(N\) und der Temperatur \(T\). 

Zum Artikel Zu den Aufgaben

Starke und schwache Kausalität

Grundwissen

  • Schwacher Kausalität liegt vor, wenn exakt gleiche Ursachen die stets gleiche Wirkung zur Folge haben.
  •  Starker Kausalität liegt vor, wenn ähnliche Ursachen eine ähnliche Wirkung zur Folge haben. Kleine Änderungen im Ausgangszustand führen nur zu kleinen Änderungen im Ergebnis.
  • Viele Systeme in der Natur sind labile Gleichgewichtszustände. Hier liegt keine starke Kausalität vor.

Zum Artikel
Grundwissen

  • Schwacher Kausalität liegt vor, wenn exakt gleiche Ursachen die stets gleiche Wirkung zur Folge haben.
  •  Starker Kausalität liegt vor, wenn ähnliche Ursachen eine ähnliche Wirkung zur Folge haben. Kleine Änderungen im Ausgangszustand führen nur zu kleinen Änderungen im Ergebnis.
  • Viele Systeme in der Natur sind labile Gleichgewichtszustände. Hier liegt keine starke Kausalität vor.

Zum Artikel Zu den Aufgaben

Kausalitätsprinzip - Grenzen der NEWTONschen Mechanik

Grundwissen

  • Würde man einen Zustand vollständig kennen, könnte man mit Hilfe der Naturgesetze alle Folgen daraus ableiten.
  • Damit wäre alles Geschehen der Welt unabänderlich bestimmt (Determinismus).
  • Die Quantenmechanik und die Relativitätstheorie machen jedoch die Grenzen des Determinismus deutlich.

Zum Artikel
Grundwissen

  • Würde man einen Zustand vollständig kennen, könnte man mit Hilfe der Naturgesetze alle Folgen daraus ableiten.
  • Damit wäre alles Geschehen der Welt unabänderlich bestimmt (Determinismus).
  • Die Quantenmechanik und die Relativitätstheorie machen jedoch die Grenzen des Determinismus deutlich.

Zum Artikel Zu den Aufgaben

Schwingungen der Luftsäule in Pfeifen

Grundwissen

  • Du unterscheidest bei Luftsäulen in Pfeifen zwischen offenen und gedeckten Pfeifen, je nachdem ob das Pfeifenrohr offen oder geschlossen ist.
  • Offene Pfeifen haben am offenen Ende stets einen Bewegungsbauch, gedeckte Pfeifen am geschlossenen Ende einen Bewegungsknoten.
  • Entsprechend haben eine offene und eine gedeckte Pfeife gleicher Länge eine unterschiedliche Grundschwingung.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Du unterscheidest bei Luftsäulen in Pfeifen zwischen offenen und gedeckten Pfeifen, je nachdem ob das Pfeifenrohr offen oder geschlossen ist.
  • Offene Pfeifen haben am offenen Ende stets einen Bewegungsbauch, gedeckte Pfeifen am geschlossenen Ende einen Bewegungsknoten.
  • Entsprechend haben eine offene und eine gedeckte Pfeife gleicher Länge eine unterschiedliche Grundschwingung.

Zum Artikel Zu den Aufgaben

Stehende Wellen und Eigenschwingungen

Grundwissen

  • Schallwellen können reflektiert werden, z.B. von einer Wand oder einem Berghang.
  • Wellen können sich gegenseitig überlagern.
  • Stehende Wellen entstehen meist, wenn sich reflektierte Wellen in der Eigenfrequenz eines Systems überlagern.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Schallwellen können reflektiert werden, z.B. von einer Wand oder einem Berghang.
  • Wellen können sich gegenseitig überlagern.
  • Stehende Wellen entstehen meist, wenn sich reflektierte Wellen in der Eigenfrequenz eines Systems überlagern.

Zum Artikel Zu den Aufgaben

Kennlinien von Widerständen

Grundwissen

  • Die \(U\)-\(I\)-Kennlinie eines Leiters stellt den Zusammenhang zwischen angelegter Spannung \(U\) und sich ergebender Stromstärke \(I\) dar.
  • Die Kennlinien von ohmschen Widerständen sind Ursprungshalbgeraden.
  • Wird die \(U\)-\(I\)-Kennlinie eines Leiters mit zunehmender Spannung flacher, so nimmt der Widerstand des Leiters zu, wird sie steiler, so nimmt sein Widerstand ab.
  • Mit Hilfe der Kennlinie kannst du auch Spannungen und Ströme bei nicht ohmschen Widerständen ermitteln.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die \(U\)-\(I\)-Kennlinie eines Leiters stellt den Zusammenhang zwischen angelegter Spannung \(U\) und sich ergebender Stromstärke \(I\) dar.
  • Die Kennlinien von ohmschen Widerständen sind Ursprungshalbgeraden.
  • Wird die \(U\)-\(I\)-Kennlinie eines Leiters mit zunehmender Spannung flacher, so nimmt der Widerstand des Leiters zu, wird sie steiler, so nimmt sein Widerstand ab.
  • Mit Hilfe der Kennlinie kannst du auch Spannungen und Ströme bei nicht ohmschen Widerständen ermitteln.

Zum Artikel Zu den Aufgaben

Schaltung von Messgeräten

Grundwissen

  • Strommesser werden immer in Reihe geschaltet und müssen einen vernachlässigbaren Innenwiderstand besitzen.
  • Spannungsmesser werden immer parallel zu dem Bauteil geschaltet, dessen Spannung bzw. dessen verursachten Spannungsabfall du messen möchtest.
  • Spannungsmesser besitzen einen möglichst großen Innenwiderstand. 

Zum Artikel Zu den Aufgaben
Grundwissen

  • Strommesser werden immer in Reihe geschaltet und müssen einen vernachlässigbaren Innenwiderstand besitzen.
  • Spannungsmesser werden immer parallel zu dem Bauteil geschaltet, dessen Spannung bzw. dessen verursachten Spannungsabfall du messen möchtest.
  • Spannungsmesser besitzen einen möglichst großen Innenwiderstand. 

Zum Artikel Zu den Aufgaben

Töne

Grundwissen

  • Die Frequenz einer Schallwelle bestimmt die wahrgenommene Tonhöhe.
  • Der Kammerton \(\bar{a}\) hat eine Frequenz von \(440\,\rm{Hz}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Frequenz einer Schallwelle bestimmt die wahrgenommene Tonhöhe.
  • Der Kammerton \(\bar{a}\) hat eine Frequenz von \(440\,\rm{Hz}\).

Zum Artikel Zu den Aufgaben

Widerstand

Grundwissen

  • Der Widerstand ist der Quotient aus der über dem Leiter abfallenden Spannung und der Stärke des Stroms, die durch den Leiter fließt.
  • Kurz: \(R=\frac{U}{I}\)
  • Die Einheit des elektrischen Widerstands ist \([R]:=1\,\Omega\,(\text{Ohm})\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Der Widerstand ist der Quotient aus der über dem Leiter abfallenden Spannung und der Stärke des Stroms, die durch den Leiter fließt.
  • Kurz: \(R=\frac{U}{I}\)
  • Die Einheit des elektrischen Widerstands ist \([R]:=1\,\Omega\,(\text{Ohm})\)

Zum Artikel Zu den Aufgaben

Ein- und Ausschalten von RC-Kreisen

Grundwissen

  • Ladung auf dem Kondensator, Strom im Kreis, und die Spannungen über dem Widerstand und dem Kondensator können beim Ein- und Ausschalten mit Exponentialfunktionen beschrieben werden.
  • Für die Halbwertszeit der Größen gilt jeweils \({t_H} = R \cdot C \cdot \ln \left( 2 \right)\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ladung auf dem Kondensator, Strom im Kreis, und die Spannungen über dem Widerstand und dem Kondensator können beim Ein- und Ausschalten mit Exponentialfunktionen beschrieben werden.
  • Für die Halbwertszeit der Größen gilt jeweils \({t_H} = R \cdot C \cdot \ln \left( 2 \right)\).

Zum Artikel Zu den Aufgaben

Schallgeschwindigkeit

Grundwissen

  • Laufzeitmessungen sind eine einfache Methode zur Bestimmung der Schallgeschwindigkeit.
  • Die Schallgeschwindigkeit in Luft liegt im Bereich von \(c_{\rm{Schall}}=340\,\rm{\frac{m}{s}}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Laufzeitmessungen sind eine einfache Methode zur Bestimmung der Schallgeschwindigkeit.
  • Die Schallgeschwindigkeit in Luft liegt im Bereich von \(c_{\rm{Schall}}=340\,\rm{\frac{m}{s}}\).

Zum Artikel Zu den Aufgaben

COULOMB-Gesetz

Grundwissen

  • Alle geladenen Körper üben aufeinander Kräfte aus, die man als elektrische Kräfte bezeichnet.
  • Die Richtung dieser Kräfte verläuft auf der Verbindungsgerade der beiden Ladungsschwerpunkte, der Betrag dieser Kräfte ist (wegen des Wechselwirkungsgesetzes) gleich groß.
  • Die Kräfte sind bei gleichartigen Ladungen voneinander weg und bei verschiedenartigen Ladungen aufeinander zu gerichtet.
  • Der Betrag ist proportional zu beiden Ladungen und umgekehrt proportional zum Quadrat des Abstandes der beiden Ladungsschwerpunkte.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Alle geladenen Körper üben aufeinander Kräfte aus, die man als elektrische Kräfte bezeichnet.
  • Die Richtung dieser Kräfte verläuft auf der Verbindungsgerade der beiden Ladungsschwerpunkte, der Betrag dieser Kräfte ist (wegen des Wechselwirkungsgesetzes) gleich groß.
  • Die Kräfte sind bei gleichartigen Ladungen voneinander weg und bei verschiedenartigen Ladungen aufeinander zu gerichtet.
  • Der Betrag ist proportional zu beiden Ladungen und umgekehrt proportional zum Quadrat des Abstandes der beiden Ladungsschwerpunkte.

Zum Artikel Zu den Aufgaben

Periodentafel der Elemente

Grundwissen

  • Die Struktur im Periodensystem der Elemente legen Beobachtungen hinsichtlich der Ionisierungsenergie und des Molvolumens nahe.
  • Die Anordnung der Elemente im Periodensystem erfolgt nach ihrer Ordnungszahl (Kernladungszahl) \(Z\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Struktur im Periodensystem der Elemente legen Beobachtungen hinsichtlich der Ionisierungsenergie und des Molvolumens nahe.
  • Die Anordnung der Elemente im Periodensystem erfolgt nach ihrer Ordnungszahl (Kernladungszahl) \(Z\).

Zum Artikel Zu den Aufgaben

Atomaufbau

Grundwissen

  • Modelle über den Atomaufbau haben sich ständig weiterentwickelt.
  • Ein Atom besteht aus einem sehr kleinen Atomkern und einer Hülle.
  • Der Atomkern besteht aus Protonen und Neutronen. In der Atomhülle halten sich die Elektronen auf.
  • Protonen und Neutronen bestehen wiederum jeweils aus drei Quarks.

Zum Artikel
Grundwissen

  • Modelle über den Atomaufbau haben sich ständig weiterentwickelt.
  • Ein Atom besteht aus einem sehr kleinen Atomkern und einer Hülle.
  • Der Atomkern besteht aus Protonen und Neutronen. In der Atomhülle halten sich die Elektronen auf.
  • Protonen und Neutronen bestehen wiederum jeweils aus drei Quarks.

Zum Artikel Zu den Aufgaben

Linearer Potentialtopf

Grundwissen

  • Im Modell des eindimensionalen linearen unendlichen Potentialtopfs ist die potentielle Energie eines Teilchens im Topf Null, an den Rändern unendlich groß.
  • Die Aufenthaltswahrscheinlichkeit des Teilchens am Topfrand ist Null. Die Eigenschwingungen des Teilchens im Potentialtopf sind daher analog zu stehenden Seilwellen an festen Enden.
  • Mit der Beziehung \(\lambda=\frac{h}{p}\) ergibt sich die Gesamtenergie des Teilchens im Potentialtopf zu \({E_{\rm{ges}}} = \frac{{{h^2}}}{{8 \cdot m \cdot {a^2}}} \cdot {n^2}\)
  • Mit \(n\in \left\{ {1\;;\;2\;;\;3\;;\;...} \right\}\) erhält man die verschiedenen Energieniveaus des Elektrons im Potentialtopf.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Im Modell des eindimensionalen linearen unendlichen Potentialtopfs ist die potentielle Energie eines Teilchens im Topf Null, an den Rändern unendlich groß.
  • Die Aufenthaltswahrscheinlichkeit des Teilchens am Topfrand ist Null. Die Eigenschwingungen des Teilchens im Potentialtopf sind daher analog zu stehenden Seilwellen an festen Enden.
  • Mit der Beziehung \(\lambda=\frac{h}{p}\) ergibt sich die Gesamtenergie des Teilchens im Potentialtopf zu \({E_{\rm{ges}}} = \frac{{{h^2}}}{{8 \cdot m \cdot {a^2}}} \cdot {n^2}\)
  • Mit \(n\in \left\{ {1\;;\;2\;;\;3\;;\;...} \right\}\) erhält man die verschiedenen Energieniveaus des Elektrons im Potentialtopf.

Zum Artikel Zu den Aufgaben

Elektrische Stromstärke

Grundwissen

  • Die elektrische Stromstärke, Symbol \(I\), ist ein Maß für die elektrische Ladung, die pro Sekunde durch einen Leiterquerschnitt hindurchfließt.
  • Die Einheit der elektrischen Stromstärke ist das Ampere, Symbol \(\rm{A}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die elektrische Stromstärke, Symbol \(I\), ist ein Maß für die elektrische Ladung, die pro Sekunde durch einen Leiterquerschnitt hindurchfließt.
  • Die Einheit der elektrischen Stromstärke ist das Ampere, Symbol \(\rm{A}\).

Zum Artikel Zu den Aufgaben

Volumen- und Längenänderung von Festkörpern

Grundwissen

  • Festkörper dehnen sich beim Erwärmen i.d.R. in alle Raumrichtung gleichmäßig aus.
  • Bei Festkörpern gibt man oft den Längenausdehnungskoeffizienten \(\alpha\) an.
  • Für die Längenänderung gilt \(\Delta l = \alpha \cdot {l_0} \cdot \Delta \vartheta\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Festkörper dehnen sich beim Erwärmen i.d.R. in alle Raumrichtung gleichmäßig aus.
  • Bei Festkörpern gibt man oft den Längenausdehnungskoeffizienten \(\alpha\) an.
  • Für die Längenänderung gilt \(\Delta l = \alpha \cdot {l_0} \cdot \Delta \vartheta\).

Zum Artikel Zu den Aufgaben

Generator- und Motorprinzip

Grundwissen

  • Die Funktionsweise von Generatoren und Elektromotoren sind physikalisch eng verbunden
  • Zentral ist bei beiden die Lorentzkraft auf bewegte Ladungen im Magnetfeld

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Funktionsweise von Generatoren und Elektromotoren sind physikalisch eng verbunden
  • Zentral ist bei beiden die Lorentzkraft auf bewegte Ladungen im Magnetfeld

Zum Artikel Zu den Aufgaben

Viertakt-Ottomotor

Grundwissen

  • Die 4 Takte sind: Ansaugen, Verdichten, Arbeiten, Auspuffen
  • Mehrere Zylinder eines Motors laufen versetzt. Ziel ist, dass immer ein Zylinder gerade im Arbeitstakt ist.
  • Der Wirkungsgrad eines Ottomotors liegt im Idealfall bei \(\eta=35\,\%\), meist jedoch deutlich darunter.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die 4 Takte sind: Ansaugen, Verdichten, Arbeiten, Auspuffen
  • Mehrere Zylinder eines Motors laufen versetzt. Ziel ist, dass immer ein Zylinder gerade im Arbeitstakt ist.
  • Der Wirkungsgrad eines Ottomotors liegt im Idealfall bei \(\eta=35\,\%\), meist jedoch deutlich darunter.

Zum Artikel Zu den Aufgaben

Herleitung der Wellenfunktion

Grundwissen

  • Die Wellenfunktion beschreibt die Ausbreitung einer Welle mathematisch.
  • Für eine in positive \(x\)-Richtung laufende Welle gilt: \(y(x;t) = \hat y \cdot \sin \left( {2\pi  \cdot \left( {\frac{t}{T} - \frac{x}{\lambda }} \right)} \right)\)

Zum Artikel
Grundwissen

  • Die Wellenfunktion beschreibt die Ausbreitung einer Welle mathematisch.
  • Für eine in positive \(x\)-Richtung laufende Welle gilt: \(y(x;t) = \hat y \cdot \sin \left( {2\pi  \cdot \left( {\frac{t}{T} - \frac{x}{\lambda }} \right)} \right)\)

Zum Artikel Zu den Aufgaben

KIRCHHOFFsche Gesetze für Fortgeschrittene

Grundwissen

  • Die Knotenregel kann auch bei beliebig vielen zu- und abfließenden Strömen genutzt werden.
  • Die Maschenregel gilt auch bei mehreren Quellen in einem Stromkreis.
  • So lassen sich auch Ströme und Spannungen in sehr komplexen Schaltungen berechnen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Knotenregel kann auch bei beliebig vielen zu- und abfließenden Strömen genutzt werden.
  • Die Maschenregel gilt auch bei mehreren Quellen in einem Stromkreis.
  • So lassen sich auch Ströme und Spannungen in sehr komplexen Schaltungen berechnen.

Zum Artikel Zu den Aufgaben

Vom Stromkreis zum Schaltplan

Grundwissen

  • Auf Fotos sind nicht alle Elemente einer elektrischen Schaltung gut und klar zu erkennen.
  • Ein Schaltplan ist eine vereinfachte Darstellung einer elektrischen Schaltung.
  • Die verschiedenen Schaltsymbole für die Bauteile sind in einer Norm festgelegt.
  • Schaltpläne können auch am Computer erstellt werden

Zum Artikel Zu den Aufgaben
Grundwissen

  • Auf Fotos sind nicht alle Elemente einer elektrischen Schaltung gut und klar zu erkennen.
  • Ein Schaltplan ist eine vereinfachte Darstellung einer elektrischen Schaltung.
  • Die verschiedenen Schaltsymbole für die Bauteile sind in einer Norm festgelegt.
  • Schaltpläne können auch am Computer erstellt werden

Zum Artikel Zu den Aufgaben

Stromkreismodelle

Grundwissen

  • Mit Hilfe verschiedener Modelle kannst du dir die Abläufe im Stromkreis vorstellen und erklären.
  • Du kannst dir einen Stromkreis wie einen offenen Wasserkreislauf vorstellen.
  • Du kannst dir einen Stromkreis wie eine Fahrradkette, die ein Rad antreibt, vorstellen.
  • Du kannst dir einen Stromkreis mit Hilfe von Luftdruck und Elektronengasdruck vorstellen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Mit Hilfe verschiedener Modelle kannst du dir die Abläufe im Stromkreis vorstellen und erklären.
  • Du kannst dir einen Stromkreis wie einen offenen Wasserkreislauf vorstellen.
  • Du kannst dir einen Stromkreis wie eine Fahrradkette, die ein Rad antreibt, vorstellen.
  • Du kannst dir einen Stromkreis mit Hilfe von Luftdruck und Elektronengasdruck vorstellen.

Zum Artikel Zu den Aufgaben