Suchergebnis für:
Gefahr durch Strom und Körperwiderstand
Grundwissen
- Strom kann für den Menschen schon ab ca. \(30\,\rm{mA}\) tödlich sein.
- Wechselstrom ist gefährlicher als Gleichstrom.
- Der Körperwiderstand liegt mit Übergangswiderständen der Haut im Bereich von \(1\)-\(5\,\rm{k}\Omega\), je nach Weg durch den Körper.
Grundwissen
- Strom kann für den Menschen schon ab ca. \(30\,\rm{mA}\) tödlich sein.
- Wechselstrom ist gefährlicher als Gleichstrom.
- Der Körperwiderstand liegt mit Übergangswiderständen der Haut im Bereich von \(1\)-\(5\,\rm{k}\Omega\), je nach Weg durch den Körper.
Elektrizität und Ladung
Grundwissen
- Es gibt zwei unterschiedliche Ladungsarten: positive und negative Ladung.
- Gleichnamige Ladungen stoßen sich gegenseitig ab, ungleichnamige ziehen sich an.
- Ladungen sind die Ursache dafür, dass sich Gegenstände anziehen und abstoßen können.
- Eine Folge der Kraftwirkung zwischen Ladungen ist die Influenz.
Grundwissen
- Es gibt zwei unterschiedliche Ladungsarten: positive und negative Ladung.
- Gleichnamige Ladungen stoßen sich gegenseitig ab, ungleichnamige ziehen sich an.
- Ladungen sind die Ursache dafür, dass sich Gegenstände anziehen und abstoßen können.
- Eine Folge der Kraftwirkung zwischen Ladungen ist die Influenz.
Auftreten von Induktion
Grundwissen
- Ändert sich das Magnetfeld, dass eine Spule durchsetzt, so wird in der Spule eine Induktionsspannung induziert.
- Je größer die Änderung des Magnetfeldes, desto größer die Induktionsspannung.
- Je schneller die Änderung des Magnetfeldes, desto größer die Induktionsspannung.
Grundwissen
- Ändert sich das Magnetfeld, dass eine Spule durchsetzt, so wird in der Spule eine Induktionsspannung induziert.
- Je größer die Änderung des Magnetfeldes, desto größer die Induktionsspannung.
- Je schneller die Änderung des Magnetfeldes, desto größer die Induktionsspannung.
Zusammenhang von Induktion und LORENTZ-Kraft
Grundwissen
- Das Auftreten von Induktionsspannungen kann mithilfe der LORENTZ-Kraft erklärt werden
- Ladungstrennung aufgrund von Bewegung von Ladung im Magnetfeld wird als Induktionsspannung messbar
- Wenn sich die vom Magnetfeld durchsetzte Fläche eines Leiterrahmens ändert, wird eine Induktionsspannung messbar
Grundwissen
- Das Auftreten von Induktionsspannungen kann mithilfe der LORENTZ-Kraft erklärt werden
- Ladungstrennung aufgrund von Bewegung von Ladung im Magnetfeld wird als Induktionsspannung messbar
- Wenn sich die vom Magnetfeld durchsetzte Fläche eines Leiterrahmens ändert, wird eine Induktionsspannung messbar
Induktionsstrom und Regel von Lenz
Grundwissen
- Der Induktionsstrom ist stets so gerichtet, dass der Induktionsstrom der Ursache seiner Entstehung entgegenwirkt.
- Die LENZsche ermöglicht einfache Vorhersagen zur Richtung auftretender Induktionsströme.
Grundwissen
- Der Induktionsstrom ist stets so gerichtet, dass der Induktionsstrom der Ursache seiner Entstehung entgegenwirkt.
- Die LENZsche ermöglicht einfache Vorhersagen zur Richtung auftretender Induktionsströme.
Influenz und Polarisation
Grundwissen
- Eine Folge der Kraftwirkung zwischen elektrischen Ladungen ist die Influenz.
- In elektrischen Leitern bewirkt die Influenz eine Trennung von positiven und negativen Ladungen.
- In Isolatoren bewirkt die Influenz eine Verschiebung von positiven und negativen Ladungen gegeneinander. Dies nennt man Polarisation.
Grundwissen
- Eine Folge der Kraftwirkung zwischen elektrischen Ladungen ist die Influenz.
- In elektrischen Leitern bewirkt die Influenz eine Trennung von positiven und negativen Ladungen.
- In Isolatoren bewirkt die Influenz eine Verschiebung von positiven und negativen Ladungen gegeneinander. Dies nennt man Polarisation.
Elektrische Kraft
Grundwissen
- Elektrisch geladene Körper üben aufeinander Kräfte aus. Diese Kräfte nennen wir elektrische Kräfte und bezeichnen sie mit \(\vec F_{\rm{el}}\).
- Sind zwei Körper gleichartig geladen, also entweder beide positiv oder beide negativ, dann stoßen sich die Körper gegenseitig ab.
- Sind die Körper dagegen verschiedenartig geladen, also einer positiv und einer negativ, dann ziehen sich die Körper gegenseitig an.
Grundwissen
- Elektrisch geladene Körper üben aufeinander Kräfte aus. Diese Kräfte nennen wir elektrische Kräfte und bezeichnen sie mit \(\vec F_{\rm{el}}\).
- Sind zwei Körper gleichartig geladen, also entweder beide positiv oder beide negativ, dann stoßen sich die Körper gegenseitig ab.
- Sind die Körper dagegen verschiedenartig geladen, also einer positiv und einer negativ, dann ziehen sich die Körper gegenseitig an.
Elektrische Ladung und die Einheit Coulomb
Grundwissen
- Ist ein Körper elektrisch neutral, dann befinden sich in und auf ihm gleich viele Protonen und Elektronen.
- Ist ein Körper negativ geladen, dann befinden sich in und auf ihm mehr Elektronen als Protonen.
- Ist ein Körper positiv geladen, dann befinden sich in und auf ihm mehr Protonen als Elektronen (besser: weniger Elektronen als Protonen).
- Das Formelzeichen für die elektrische Ladung ist \(q\) oder \(Q\), die Maßeinheit der elektrischen Ladung ist \(1\,\rm{C}\) (Coulomb).
Grundwissen
- Ist ein Körper elektrisch neutral, dann befinden sich in und auf ihm gleich viele Protonen und Elektronen.
- Ist ein Körper negativ geladen, dann befinden sich in und auf ihm mehr Elektronen als Protonen.
- Ist ein Körper positiv geladen, dann befinden sich in und auf ihm mehr Protonen als Elektronen (besser: weniger Elektronen als Protonen).
- Das Formelzeichen für die elektrische Ladung ist \(q\) oder \(Q\), die Maßeinheit der elektrischen Ladung ist \(1\,\rm{C}\) (Coulomb).
Magnetische Flussdichte und die Maßeinheit Tesla
Grundwissen
- Befindet sich ein gerader Leiter der Länge \(l\), der von einem Strom der Stärke \(I\) durchflossen wird, senkrecht zu den Feldlinien in einem magnetischen Feld, und wirkt auf diesen Leiter eine magnetische Kraft vom Betrag \(F_{\rm{mag}}\), dann definieren wir die magnetische Flussdichte \(B\) des magnetischen Feldes am Ort des Leiters durch \(B := \frac{F_{\rm{mag}}}{l \cdot I}\).
- Die magnetische Flussdichte \(B\) ist ein Maß für "die Stärke" eines magnetischen Feldes.
- Das Formelzeichen für die magnetische Flussdichte ist \(B\), die Maßeinheit der magnetischen Flussdichte ist \(1\,\rm{T}\) (Tesla).
Grundwissen
- Befindet sich ein gerader Leiter der Länge \(l\), der von einem Strom der Stärke \(I\) durchflossen wird, senkrecht zu den Feldlinien in einem magnetischen Feld, und wirkt auf diesen Leiter eine magnetische Kraft vom Betrag \(F_{\rm{mag}}\), dann definieren wir die magnetische Flussdichte \(B\) des magnetischen Feldes am Ort des Leiters durch \(B := \frac{F_{\rm{mag}}}{l \cdot I}\).
- Die magnetische Flussdichte \(B\) ist ein Maß für "die Stärke" eines magnetischen Feldes.
- Das Formelzeichen für die magnetische Flussdichte ist \(B\), die Maßeinheit der magnetischen Flussdichte ist \(1\,\rm{T}\) (Tesla).
Innenwiderstand von Quellen
Grundwissen
- Bei einer belasteten realen Spannungsquelle unterscheiden sich Klemmenspannung \(U_{\rm{kl}}\) und Leerlaufspannung \(U_0\)
- Der Kurzschlussstrom ergibt sich aus \(I_{\rm{max}}=\frac{U_0}{R_{\rm{i}}}\)
Grundwissen
- Bei einer belasteten realen Spannungsquelle unterscheiden sich Klemmenspannung \(U_{\rm{kl}}\) und Leerlaufspannung \(U_0\)
- Der Kurzschlussstrom ergibt sich aus \(I_{\rm{max}}=\frac{U_0}{R_{\rm{i}}}\)
Orientierung mit Hilfe des Polarsterns (Nordstern)
Grundwissen
- Der Polarstern steht nahe des Himmelsnordpols und lässt sich daher zur Bestimmung der geographischen Nordrichtung nutzen
- Die Höhe \(h\) des Polarsterns über dem Horizont ist gleich der geographischen Breite \(\varphi\) des Beobachters.
Grundwissen
- Der Polarstern steht nahe des Himmelsnordpols und lässt sich daher zur Bestimmung der geographischen Nordrichtung nutzen
- Die Höhe \(h\) des Polarsterns über dem Horizont ist gleich der geographischen Breite \(\varphi\) des Beobachters.
Entwicklung schwerer Sterne
Grundwissen
- Massereiche Sterne der Hauptreihe kollabieren unter ihrer eigenen Gravitation, wenn im Kern kein Energiegewinn mittels Fusion mehr möglich ist.
- Neutronensterne besitzen kleine Radien von etwas \(10\) bis \(13\,\rm{km}\) und eine extrem hohe Dichte.
- Schnell rotierende Neutronensterne können gerichtete Radiostrahlung aussenden, die bei günstiger geometrischer Lage auf der Erde detektiert werden können. Solche Sterne nennt man Pulsare.
Grundwissen
- Massereiche Sterne der Hauptreihe kollabieren unter ihrer eigenen Gravitation, wenn im Kern kein Energiegewinn mittels Fusion mehr möglich ist.
- Neutronensterne besitzen kleine Radien von etwas \(10\) bis \(13\,\rm{km}\) und eine extrem hohe Dichte.
- Schnell rotierende Neutronensterne können gerichtete Radiostrahlung aussenden, die bei günstiger geometrischer Lage auf der Erde detektiert werden können. Solche Sterne nennt man Pulsare.
Dunkle Materie und Dunkle Energie
Grundwissen
- Nur etwa 4,9% der im Universum enthaltenen Masse besteht aus den Standardteilchen der Elementarteilchenphysik
- 26,8% bestehen aus Dunkler Materie, die zur Masse von Galaxien beiträgt und rein gravitativ wechselwirkt.
- 68,3% bestehen aus sog. Dunkler Energie die mit negativem Druck einhergeht und bestrebt ist, den Raum auszudehnen.
Grundwissen
- Nur etwa 4,9% der im Universum enthaltenen Masse besteht aus den Standardteilchen der Elementarteilchenphysik
- 26,8% bestehen aus Dunkler Materie, die zur Masse von Galaxien beiträgt und rein gravitativ wechselwirkt.
- 68,3% bestehen aus sog. Dunkler Energie die mit negativem Druck einhergeht und bestrebt ist, den Raum auszudehnen.
Kosmologie und Standardmodell
Grundwissen
- Die Kosmologie beschäftigt sich mit dem derzeitigen Aufbau und der zeitlichen Entwicklung, also der Geschichte des Universums
- Das sog. Standardmodell der Kosmologie ist die anerkannteste Theorie über die Entwicklung des Universums und geht von einem Urknall vor 13,8 Milliarden Jahren aus.
Grundwissen
- Die Kosmologie beschäftigt sich mit dem derzeitigen Aufbau und der zeitlichen Entwicklung, also der Geschichte des Universums
- Das sog. Standardmodell der Kosmologie ist die anerkannteste Theorie über die Entwicklung des Universums und geht von einem Urknall vor 13,8 Milliarden Jahren aus.
Energie im Gravitationsfeld
Grundwissen
- Die Arbeit im Gravitationsfeld ist \(W =E_{\rm{pot,End}}-E_{\rm{pot,Anfang}}= - G \cdot m \cdot M \cdot \frac{1}{{{r_E}}} + G \cdot m \cdot M \cdot \frac{1}{{{r_A}}}\)
- Im freien Weltall besitzen Körper keine potentielle Energie, es gilt: \(E_{\rm{pot,}\infty}=0\).
- Allgemein gilt für die Fluchtgeschwindigkeit von einem Körper \(v_{\rm{Flucht}}=\sqrt {\frac{{2 \cdot G \cdot M}}{r}}\)
- Die Fluchtgeschwindigkeit der Erde ist \(v_{\rm Flucht}= 11{,}2\,\rm{\frac{km}{s}}\)
Grundwissen
- Die Arbeit im Gravitationsfeld ist \(W =E_{\rm{pot,End}}-E_{\rm{pot,Anfang}}= - G \cdot m \cdot M \cdot \frac{1}{{{r_E}}} + G \cdot m \cdot M \cdot \frac{1}{{{r_A}}}\)
- Im freien Weltall besitzen Körper keine potentielle Energie, es gilt: \(E_{\rm{pot,}\infty}=0\).
- Allgemein gilt für die Fluchtgeschwindigkeit von einem Körper \(v_{\rm{Flucht}}=\sqrt {\frac{{2 \cdot G \cdot M}}{r}}\)
- Die Fluchtgeschwindigkeit der Erde ist \(v_{\rm Flucht}= 11{,}2\,\rm{\frac{km}{s}}\)
HERTZSPRUNG-RUSSELL-Diagramm
Grundwissen
- Das Hertzsprung-Russell-Diagramm zeigt grob die Verteilung der Sterne über ihre Entwicklungsstadien.
- Im Diagramm zeigen sich verschiedene charakteristische Bereiche.
- An der Position eines Sterns im HRD kann man meist seinen Entwicklungszustand ablesen.
Grundwissen
- Das Hertzsprung-Russell-Diagramm zeigt grob die Verteilung der Sterne über ihre Entwicklungsstadien.
- Im Diagramm zeigen sich verschiedene charakteristische Bereiche.
- An der Position eines Sterns im HRD kann man meist seinen Entwicklungszustand ablesen.
Potential und elektrische Spannung
Grundwissen
- Die Potentialdifferenz \(\Delta {\varphi _{\rm{AB}}}\) ist der negative Quotient aus der Änderung der potentiellen Energie \(\Delta {E_{{\rm{pot}}{\rm{,AB}}}}\) und der Probeladung \(q\).
- Die Potentialdifferenz zwischen zwei Punkten A und B ist die Spannung \(U_{\rm{AB}}\).
- Alle Punkte mit gleichem Potential befinden sich auf einer Äquipotentiallinie.
Grundwissen
- Die Potentialdifferenz \(\Delta {\varphi _{\rm{AB}}}\) ist der negative Quotient aus der Änderung der potentiellen Energie \(\Delta {E_{{\rm{pot}}{\rm{,AB}}}}\) und der Probeladung \(q\).
- Die Potentialdifferenz zwischen zwei Punkten A und B ist die Spannung \(U_{\rm{AB}}\).
- Alle Punkte mit gleichem Potential befinden sich auf einer Äquipotentiallinie.
Magnetische Wirkung des elektrischen Stroms
Grundwissen
- Elektrischer Strom besitzt eine magnetische Wirkung, die bei einem einfachen geraden Leiter jedoch sehr schwach ist.
- Wird in eine Spule ein ferromagnetischer Stoff wie Eisen eingebracht, verstärkt sich die magnetische Wirkung sehr deutlich.
- Ein großer Vorteil von Elektromagneten ist, dass ihre magnetische Wirkung beim Abschalten des Stroms nahezu verschwindet.
Grundwissen
- Elektrischer Strom besitzt eine magnetische Wirkung, die bei einem einfachen geraden Leiter jedoch sehr schwach ist.
- Wird in eine Spule ein ferromagnetischer Stoff wie Eisen eingebracht, verstärkt sich die magnetische Wirkung sehr deutlich.
- Ein großer Vorteil von Elektromagneten ist, dass ihre magnetische Wirkung beim Abschalten des Stroms nahezu verschwindet.
Monat
Grundwissen
- Ein synodischer Monat ist die Zeit von einer Mondphase bis zu ihrer Wiederkehr.
- Ein siderischer Monat ist die Zeit für einen vollen Umlauf des Mondes um die Erde gegenüber dem Sternenhintergrund.
Grundwissen
- Ein synodischer Monat ist die Zeit von einer Mondphase bis zu ihrer Wiederkehr.
- Ein siderischer Monat ist die Zeit für einen vollen Umlauf des Mondes um die Erde gegenüber dem Sternenhintergrund.
Atomare Vorstellungen der Elektrizität
Grundwissen
- In der Modellvorstellung des Kern-Hülle-Modells besteht ein Atom aus einem positiv geladenen Atomkern und negativ geladenen Elektronen in der Atomhülle.
- Positive Ladung wird oft rot, negative Ladung blau dargestellt.
- Bei vielen Phänomenen bewegen sich nur die Elektronen, während die Atomkerne an ihrem Platz bleiben.
Grundwissen
- In der Modellvorstellung des Kern-Hülle-Modells besteht ein Atom aus einem positiv geladenen Atomkern und negativ geladenen Elektronen in der Atomhülle.
- Positive Ladung wird oft rot, negative Ladung blau dargestellt.
- Bei vielen Phänomenen bewegen sich nur die Elektronen, während die Atomkerne an ihrem Platz bleiben.
LENZsche Regel
Grundwissen
- Der Induktionsstrom ist stets so gerichtet, dass der Induktionsstrom der Ursache seiner Entstehung entgegenwirkt.
- Die LENZsche Regel ermöglicht einfache Vorhersagen zur Richtung auftretender Induktionsströme.
Grundwissen
- Der Induktionsstrom ist stets so gerichtet, dass der Induktionsstrom der Ursache seiner Entstehung entgegenwirkt.
- Die LENZsche Regel ermöglicht einfache Vorhersagen zur Richtung auftretender Induktionsströme.
Magnetischer Fluss und Induktionsgesetz
Grundwissen
- Der magnetische Fluss \(\Phi = B \cdot A \cdot \cos\left(\varphi\right)\) ist salopp gesagt das Maß für die "Menge an Magnetfeld, das in einer Induktionsanordnung durch die Leiterschleife fließt".
- In einer Induktionsanordnung kann man am Spannungsmesser in der Induktionsspule immer dann eine Induktionsspannung \(U_{\rm{i}}\) beobachten, wenn sich der magnetische Fluss \(\Phi\) durch die Leiterschleife ändert.
- Der Wert der Induktionsspannung berechnet sich durch \({U_{\rm{i}}} = - \frac{{d\Phi }}{{dt}}\) bzw. für den Fall einer Spule mit \(N\) Windungen als Leiterschleife \({U_{\rm{i}}} = - N \cdot \frac{{d\Phi }}{{dt}}\).
Grundwissen
- Der magnetische Fluss \(\Phi = B \cdot A \cdot \cos\left(\varphi\right)\) ist salopp gesagt das Maß für die "Menge an Magnetfeld, das in einer Induktionsanordnung durch die Leiterschleife fließt".
- In einer Induktionsanordnung kann man am Spannungsmesser in der Induktionsspule immer dann eine Induktionsspannung \(U_{\rm{i}}\) beobachten, wenn sich der magnetische Fluss \(\Phi\) durch die Leiterschleife ändert.
- Der Wert der Induktionsspannung berechnet sich durch \({U_{\rm{i}}} = - \frac{{d\Phi }}{{dt}}\) bzw. für den Fall einer Spule mit \(N\) Windungen als Leiterschleife \({U_{\rm{i}}} = - N \cdot \frac{{d\Phi }}{{dt}}\).
Kosmische Hintergrundstrahlung
Grundwissen
- Diese kosmische Hintergrundstrahlung ist kurz nach dem Urknall entstandene Strahlung im Mikrowellenbereich.
- Ihr Auftreten stützt das Standardmodell (Urknalltheorie), da sie theoretisch vorhergesagt wurde.
- Fluktuationen in der Hintergrundstrahlung geben Hinweise auf die Zusammensetzung des Universums aus Materie, Dunkler Materie und Dunkler Energie.
Grundwissen
- Diese kosmische Hintergrundstrahlung ist kurz nach dem Urknall entstandene Strahlung im Mikrowellenbereich.
- Ihr Auftreten stützt das Standardmodell (Urknalltheorie), da sie theoretisch vorhergesagt wurde.
- Fluktuationen in der Hintergrundstrahlung geben Hinweise auf die Zusammensetzung des Universums aus Materie, Dunkler Materie und Dunkler Energie.
Ladungseigenschaften
Grundwissen
- Es gibt zwei unterschiedliche Ladungsarten: positive und negative Ladung.
- Gleichnamige Ladungen stoßen sich gegenseitig ab, ungleichnamige ziehen sich an.
- In Leitern können sich negative Ladungen relativ frei bewegen.
- Eine Folge der Kraftwirkung zwischen Ladungen ist die Influenz.
Grundwissen
- Es gibt zwei unterschiedliche Ladungsarten: positive und negative Ladung.
- Gleichnamige Ladungen stoßen sich gegenseitig ab, ungleichnamige ziehen sich an.
- In Leitern können sich negative Ladungen relativ frei bewegen.
- Eine Folge der Kraftwirkung zwischen Ladungen ist die Influenz.
Himmelskugel
Grundwissen
- Die Himmelskugel ist eine scheinbare, den Beobachter allseitig umgebende Kugel mit beliebig großem Radius, auf welche die Gestirne projiziert werden, sodass Positionsangaben möglich sind.
- Himmelsnordpol, Himmelssüdpol, Himmelsäquator entsprechen ihren irdischen Gegenstücken, sind nur auf die Himmelskugel projiziert.
- Himmelsdistanzen werden stets in Winkeln angegeben, da ist die Polhöhe \(h_{\rm{P}}\) gleich der geographischen Breite \(\varphi\) des Beobachters und die Äquatorhöhe \(h_{\rm{A}}=90^{\circ}-\varphi \)
Grundwissen
- Die Himmelskugel ist eine scheinbare, den Beobachter allseitig umgebende Kugel mit beliebig großem Radius, auf welche die Gestirne projiziert werden, sodass Positionsangaben möglich sind.
- Himmelsnordpol, Himmelssüdpol, Himmelsäquator entsprechen ihren irdischen Gegenstücken, sind nur auf die Himmelskugel projiziert.
- Himmelsdistanzen werden stets in Winkeln angegeben, da ist die Polhöhe \(h_{\rm{P}}\) gleich der geographischen Breite \(\varphi\) des Beobachters und die Äquatorhöhe \(h_{\rm{A}}=90^{\circ}-\varphi \)
Elementarladung
Grundwissen
- Die elektrische Ladung ist eine gequantelte Größe
- Die Elementarladung beträgt \(e=1{,}602\,176\,634\cdot 10^{-19}\,\rm{As}\)
- Die Ladung eines Elektrons beträgt \(-e\)
Grundwissen
- Die elektrische Ladung ist eine gequantelte Größe
- Die Elementarladung beträgt \(e=1{,}602\,176\,634\cdot 10^{-19}\,\rm{As}\)
- Die Ladung eines Elektrons beträgt \(-e\)
Lauf der Gestirne
Grundwissen
- Die Deklination \(\varphi\) gibt die Höhe über der Äquatorebene an.
- Die obere Kulmination beschreibt die größte Höhe eines Sterns, die untere Kulmination die geringste Höhe.
- Sterne, die sich am Beobachtungsort immer über der Horizontebene befinden, nennt man Zirkumpolarsterne.
Grundwissen
- Die Deklination \(\varphi\) gibt die Höhe über der Äquatorebene an.
- Die obere Kulmination beschreibt die größte Höhe eines Sterns, die untere Kulmination die geringste Höhe.
- Sterne, die sich am Beobachtungsort immer über der Horizontebene befinden, nennt man Zirkumpolarsterne.
Sonnenspektrum
Grundwissen
- Das von der Sonne kommende Licht ähnelt dem Spektrum eines schwarzen Körpers.
- Das Maximum der Strahlung liegt bei etwa \(550\,\rm{nm}\), also im Bereich von blau-grünem Licht.
- Im Sonnenspektrum zeigen sich viele Absorptionslinien (FRAUNHOFER-Linien), die Rückschlüsse z.B. auf die Zusammensetzung unsere Atmosphäre ermöglichen.
Grundwissen
- Das von der Sonne kommende Licht ähnelt dem Spektrum eines schwarzen Körpers.
- Das Maximum der Strahlung liegt bei etwa \(550\,\rm{nm}\), also im Bereich von blau-grünem Licht.
- Im Sonnenspektrum zeigen sich viele Absorptionslinien (FRAUNHOFER-Linien), die Rückschlüsse z.B. auf die Zusammensetzung unsere Atmosphäre ermöglichen.
Astronomische Koordinatensysteme
Grundwissen
- Für die Orientierung auf der Himmelskugel gibt es zwei unterschiedliche Beschreibungen: das Horizontsystem und das Äquatorialsystem.
- Das Horizontsystem wird bei Fernrohren genutzt, deren Grundplatte parallel zum Erdboden steht, also azimutal montiert ist.
- Das Äquatorialsystem wird genutzt, wenn sich das Fernrohr um eine Achse parallel zur Erdachse dreht, also parallaktisch (äquatorial) montiert ist.
Grundwissen
- Für die Orientierung auf der Himmelskugel gibt es zwei unterschiedliche Beschreibungen: das Horizontsystem und das Äquatorialsystem.
- Das Horizontsystem wird bei Fernrohren genutzt, deren Grundplatte parallel zum Erdboden steht, also azimutal montiert ist.
- Das Äquatorialsystem wird genutzt, wenn sich das Fernrohr um eine Achse parallel zur Erdachse dreht, also parallaktisch (äquatorial) montiert ist.
Elektrizitätslehre - Formeln
Grundwissen
- Hier findest du eine Zusammenstellung der wichtigsten Formeln aus der E-Lehre
Grundwissen
- Hier findest du eine Zusammenstellung der wichtigsten Formeln aus der E-Lehre