Direkt zum Inhalt
Suchergebnisse 1981 - 2010 von 2177

Energieabgabe von Atomen durch Emission von Photonen

Grundwissen

  • Angeregte Atome geben Energie durch die Emission von Photonen ab.
  • Diese Photon werden erst bei der Emission erzeugt, d.h. sie waren vorher nicht im Atom vorhanden.
  • Die Energie der emittierten Photonen ist immer gleich der Differenz der Energien zweier Energieniveaus des Atoms.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Angeregte Atome geben Energie durch die Emission von Photonen ab.
  • Diese Photon werden erst bei der Emission erzeugt, d.h. sie waren vorher nicht im Atom vorhanden.
  • Die Energie der emittierten Photonen ist immer gleich der Differenz der Energien zweier Energieniveaus des Atoms.

Zum Artikel Zu den Aufgaben

Energiezustände von Wasserstoff und verwandten Atomen

Grundwissen

  • Die Energiezustände des Wasserstoffatoms sind \({E_n} =  - 13{,}6\,{\rm{eV}} \cdot \frac{1}{{{n^2}}}\;;\;n \in \left\{ {1\;;\;2\;;\;3 \;;\;...} \right\}\)
  • Damit können auch die Wellenlängen \(\lambda\) der bei Wasserstoffübergängen möglichen Photonen berechnet werden.
  • Die Energiezustände von Einelektronensystemen von Atomen mit der Kernladungszahl \(Z\) sind \({E_n} =  - 13{,}6\,{\rm{eV}} \cdot \frac{Z^2}{{{n^2}}}\;;\;n \in \left\{ {1\;;\;2\;;\;3 \;;\;...} \right\}\)
  • Die Energiezustände von RYDBERG-Zustände aller Atomarten entsprechen den einfachen Verhältnissen beim Wasserstoffatom.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Energiezustände des Wasserstoffatoms sind \({E_n} =  - 13{,}6\,{\rm{eV}} \cdot \frac{1}{{{n^2}}}\;;\;n \in \left\{ {1\;;\;2\;;\;3 \;;\;...} \right\}\)
  • Damit können auch die Wellenlängen \(\lambda\) der bei Wasserstoffübergängen möglichen Photonen berechnet werden.
  • Die Energiezustände von Einelektronensystemen von Atomen mit der Kernladungszahl \(Z\) sind \({E_n} =  - 13{,}6\,{\rm{eV}} \cdot \frac{Z^2}{{{n^2}}}\;;\;n \in \left\{ {1\;;\;2\;;\;3 \;;\;...} \right\}\)
  • Die Energiezustände von RYDBERG-Zustände aller Atomarten entsprechen den einfachen Verhältnissen beim Wasserstoffatom.

Zum Artikel Zu den Aufgaben

Teilchenphysikaspekte in der klassischen Physik

Grundwissen

  • Auch bei Themen der klassischen Physik werden an vielen Stellen Teilchenaspekte deutlich.
  • Beispiele sind die \(\beta\)-Strahlung und das AEgIS-Experiment als Anwendung des waagerechten Wurfs.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Auch bei Themen der klassischen Physik werden an vielen Stellen Teilchenaspekte deutlich.
  • Beispiele sind die \(\beta\)-Strahlung und das AEgIS-Experiment als Anwendung des waagerechten Wurfs.

Zum Artikel Zu den Aufgaben

Erzeugung von RÖNTGEN-Strahlung

Grundwissen

  • In RÖNTGEN-Röhren werden Elektronen stark beschleunigt und treffen dann auf eine Anode aus Metall.
  • Die Beschleunigungsspannungen betragen meist zwischen \(1\,\rm{kV}\) und \(100\,\rm{kV}\).
  • Beim Abbremsen der Elektronen im Anodenmaterial entsteht RÖNTGEN-Strahlung (Bremsstrahlung und Charakteristische Strahlung) und Wärme.
  • Die Wellenlänge von RÖNTGEN-Strahlung liegt etwa zwischen \(1\,\rm{nm}\) und \(1\,\rm{pm}\).

Zum Artikel
Grundwissen

  • In RÖNTGEN-Röhren werden Elektronen stark beschleunigt und treffen dann auf eine Anode aus Metall.
  • Die Beschleunigungsspannungen betragen meist zwischen \(1\,\rm{kV}\) und \(100\,\rm{kV}\).
  • Beim Abbremsen der Elektronen im Anodenmaterial entsteht RÖNTGEN-Strahlung (Bremsstrahlung und Charakteristische Strahlung) und Wärme.
  • Die Wellenlänge von RÖNTGEN-Strahlung liegt etwa zwischen \(1\,\rm{nm}\) und \(1\,\rm{pm}\).

Zum Artikel Zu den Aufgaben

Stromkreiselemente

Grundwissen

  • Damit eine Lampe leuchtet, muss immer ein geschlossener Stromkreis vorliegen.
  • Kabel dienen als Verlängerungen und ermöglichen einen einfachen Aufbau.
  • Mit Schaltern kann der Stromkreis geöffnet und geschlossen werden.
  • Sicherungen schützen die Bauteile im Stromkreis vor zu großen Strömen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Damit eine Lampe leuchtet, muss immer ein geschlossener Stromkreis vorliegen.
  • Kabel dienen als Verlängerungen und ermöglichen einen einfachen Aufbau.
  • Mit Schaltern kann der Stromkreis geöffnet und geschlossen werden.
  • Sicherungen schützen die Bauteile im Stromkreis vor zu großen Strömen.

Zum Artikel Zu den Aufgaben

Volumenbestimmung

Grundwissen

  • Das Volumen regelmäßiger Festkörper kannst du berechnen.
  • Das Volumen unregelmäßiger Festkörper kannst du über ihre Verdrängung von Wasser bestimmen.
  • Flüssigkeiten füllst du zur Volumenbestimmung in einen Messzylinder.

Zum Artikel
Grundwissen

  • Das Volumen regelmäßiger Festkörper kannst du berechnen.
  • Das Volumen unregelmäßiger Festkörper kannst du über ihre Verdrängung von Wasser bestimmen.
  • Flüssigkeiten füllst du zur Volumenbestimmung in einen Messzylinder.

Zum Artikel Zu den Aufgaben

Helium-Neon-Laser

Grundwissen

  • Neon-Atome sind das laseraktive Medium
  • Am Prozess sind vier Energieniveaus beteiligt - es ist ein "Vier-Niveau-System"
  • Helium-Neon-Laser emittiert rotes Licht der Wellenlänge \(\lambda=633\,\rm{nm}\)

Zum Artikel
Grundwissen

  • Neon-Atome sind das laseraktive Medium
  • Am Prozess sind vier Energieniveaus beteiligt - es ist ein "Vier-Niveau-System"
  • Helium-Neon-Laser emittiert rotes Licht der Wellenlänge \(\lambda=633\,\rm{nm}\)

Zum Artikel Zu den Aufgaben

Biologische Strahlenwirkung

Grundwissen

  • Man muss unterscheiden, ob die Bestrahlung von außen erfolgt oder vom Inneren des Körpers ausgeht.
  • \(\alpha\)- und \(\beta\)-Strahlung sind besonders gefährlich, wenn ihre Quellen durch Luft oder Nahrung in den Körper aufgenommen wurden.
  • Man unterscheidet stochastische und deterministische Strahlenschäden.

Zum Artikel
Grundwissen

  • Man muss unterscheiden, ob die Bestrahlung von außen erfolgt oder vom Inneren des Körpers ausgeht.
  • \(\alpha\)- und \(\beta\)-Strahlung sind besonders gefährlich, wenn ihre Quellen durch Luft oder Nahrung in den Körper aufgenommen wurden.
  • Man unterscheidet stochastische und deterministische Strahlenschäden.

Zum Artikel Zu den Aufgaben

Dosimetrie und Dosiseinheiten

Grundwissen

Zur Beschreibung der biologischen Wirkung von ionisierender Strahlung führt man den Begriff der Dosis ein. Dabei unterscheidet man verschiedene Dosisarten.

  • Die Energiedosis \(D\), die ein Körper durch ionisierende Strahlung erhält, ist der Quotient aus der von dem Körper absorbierten Strahlungsenergie \(E\) und der Masse \(m\) des Körpers: \(D=\frac{E}{m}\). Die Energiedosis ist Grundlage der Dosimetrie im Strahlenschutz.
  • Die Ionendosis \(J\), die ein Körper durch ionisierende Strahlung erhält, ist der Quotient aus der durch Ionisation in dem Körper freiwerdenen elektrischen Ladung \(Q\) gleichen Vorzeichens und der Masse \(m\) des Körpers: \(J=\frac{Q}{m}\).
  • Die Äquivalentdosis \(H\), die ein Körper durch eine Energiedosis einer bestimmten Strahlung erhält, ist das Produkt aus der Energiedosis \(D\) und dem Strahlungswichtungsfaktor \(w_{\rm{R}}\) der Strahlung: \(H=w_{\rm{R}} \cdot D\).
  • Die effektive Dosis \(E\), die ein Organ/Gewebe durch eine Äquivalentdosis erhält, ist das Produkt aus der Äquivalentdosis \(H\) und dem Gewebewichtungsfaktor \(w_{\rm{T}}\) des absorbierenden Organs/Gewebes: \(E=w_{\rm{T}} \cdot H\).

Zum Artikel Zu den Aufgaben
Grundwissen

Zur Beschreibung der biologischen Wirkung von ionisierender Strahlung führt man den Begriff der Dosis ein. Dabei unterscheidet man verschiedene Dosisarten.

  • Die Energiedosis \(D\), die ein Körper durch ionisierende Strahlung erhält, ist der Quotient aus der von dem Körper absorbierten Strahlungsenergie \(E\) und der Masse \(m\) des Körpers: \(D=\frac{E}{m}\). Die Energiedosis ist Grundlage der Dosimetrie im Strahlenschutz.
  • Die Ionendosis \(J\), die ein Körper durch ionisierende Strahlung erhält, ist der Quotient aus der durch Ionisation in dem Körper freiwerdenen elektrischen Ladung \(Q\) gleichen Vorzeichens und der Masse \(m\) des Körpers: \(J=\frac{Q}{m}\).
  • Die Äquivalentdosis \(H\), die ein Körper durch eine Energiedosis einer bestimmten Strahlung erhält, ist das Produkt aus der Energiedosis \(D\) und dem Strahlungswichtungsfaktor \(w_{\rm{R}}\) der Strahlung: \(H=w_{\rm{R}} \cdot D\).
  • Die effektive Dosis \(E\), die ein Organ/Gewebe durch eine Äquivalentdosis erhält, ist das Produkt aus der Äquivalentdosis \(H\) und dem Gewebewichtungsfaktor \(w_{\rm{T}}\) des absorbierenden Organs/Gewebes: \(E=w_{\rm{T}} \cdot H\).

Zum Artikel Zu den Aufgaben

Exotische Atome

Grundwissen

  • Bei exotischen Atomen ist mindestens eines der beteiligten Teilchen kein gewöhnliches Atom-Bestandteil.
  • Beispiele für exotische Atome sind Myonische Atome oder Antimaterie wie Antiwasserstoff.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei exotischen Atomen ist mindestens eines der beteiligten Teilchen kein gewöhnliches Atom-Bestandteil.
  • Beispiele für exotische Atome sind Myonische Atome oder Antimaterie wie Antiwasserstoff.

Zum Artikel Zu den Aufgaben

RYDBERG-Atome

Grundwissen

  • RYDBERG-Atome sind Atome in sehr hohen Anregungszuständen.
  • Die Theorie von Bohr kann sehr gut auf RYDBERG-Atome angewendet werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • RYDBERG-Atome sind Atome in sehr hohen Anregungszuständen.
  • Die Theorie von Bohr kann sehr gut auf RYDBERG-Atome angewendet werden.

Zum Artikel Zu den Aufgaben

Energiezustände im BOHRschen Atommodell

Grundwissen

  • Durch die Quantenbedingung von BOHR kann die Energie eines Atoms nur bestimmte Werte annehmen.
  • Die Energie, um Wasserstoff aus dem Grundzustand heraus zu ionisieren beträgt \(13{,}6\,\rm{eV}\) (Ionisierungsenergie).
  • Die Gesamtenergie eines Elektrons im Wasserstoffatom gilt \({E_{{\rm{ges}}{\rm{,n}}}} = - R_{\infty} \cdot h \cdot c \cdot \frac{1}{{{n^2}}}\), wobei \(R_{\infty}\) die Rydberg-Konstante ist.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Durch die Quantenbedingung von BOHR kann die Energie eines Atoms nur bestimmte Werte annehmen.
  • Die Energie, um Wasserstoff aus dem Grundzustand heraus zu ionisieren beträgt \(13{,}6\,\rm{eV}\) (Ionisierungsenergie).
  • Die Gesamtenergie eines Elektrons im Wasserstoffatom gilt \({E_{{\rm{ges}}{\rm{,n}}}} = - R_{\infty} \cdot h \cdot c \cdot \frac{1}{{{n^2}}}\), wobei \(R_{\infty}\) die Rydberg-Konstante ist.

Zum Artikel Zu den Aufgaben

FEYNMAN-Diagramme

Grundwissen

  • FEYNMAN-Diagramme sind schematische Zeit-Ort-Diagramme von Teilchen (nicht die Bahnkurven) und bieten eine übersichtliche Darstellung von Wechselwirkungsprozessen.
  • Oft haben die Diagramme äußere Linien, welche Materieteilchen darstellen und innere Linien, die Botenteilchen darstellen.
  • Wechselwirkungspunkte, an denen Linien zusammentreffen nennt man Vertices (Singular: Vertex).

Zum Artikel Zu den Aufgaben
Grundwissen

  • FEYNMAN-Diagramme sind schematische Zeit-Ort-Diagramme von Teilchen (nicht die Bahnkurven) und bieten eine übersichtliche Darstellung von Wechselwirkungsprozessen.
  • Oft haben die Diagramme äußere Linien, welche Materieteilchen darstellen und innere Linien, die Botenteilchen darstellen.
  • Wechselwirkungspunkte, an denen Linien zusammentreffen nennt man Vertices (Singular: Vertex).

Zum Artikel Zu den Aufgaben

Gezeiten

Grundwissen

  • Den Wechsel von einem Niedrigwasser zum nächsten nennt man Tide.
  • Die Dauer einer Tide beträgt ca. 12 Stunden und 25 Minuten. Deswegen verschiebt sich die Ebbe bzw. die Flut von Tag zu Tag um 50 Minuten.
  • Der Mond und die Kreisbewegung der Erde um das Baryzentrum sind maßgeblich für Ebbe und Flut verantwortlich

Zum Artikel
Grundwissen

  • Den Wechsel von einem Niedrigwasser zum nächsten nennt man Tide.
  • Die Dauer einer Tide beträgt ca. 12 Stunden und 25 Minuten. Deswegen verschiebt sich die Ebbe bzw. die Flut von Tag zu Tag um 50 Minuten.
  • Der Mond und die Kreisbewegung der Erde um das Baryzentrum sind maßgeblich für Ebbe und Flut verantwortlich

Zum Artikel Zu den Aufgaben

Geschwindigkeitsaddition

Grundwissen

  • Ist \(u\) die Geschwindigkeit eines Körpers im System S und \(v\) die Geschwindigkeit des Systems S' in Bezug auf S und \(u'\) die Geschwindigkeit des Körpers im System S', dann gilt der Zusammenhang \(u = \frac{{u' + v}}{{1 + \frac{{u' \cdot v}}{{{c^2}}}}}\).

 

 

 

Zum Artikel
Grundwissen

  • Ist \(u\) die Geschwindigkeit eines Körpers im System S und \(v\) die Geschwindigkeit des Systems S' in Bezug auf S und \(u'\) die Geschwindigkeit des Körpers im System S', dann gilt der Zusammenhang \(u = \frac{{u' + v}}{{1 + \frac{{u' \cdot v}}{{{c^2}}}}}\).

 

 

 

Zum Artikel Zu den Aufgaben

Bauanleitung Lochkamera

Download ( Unterrichtsmaterial )

Eine Lochkamera lässt sich mit Ton- und Transpanrentpapier selbst bauen. In dieser Anleitung ist zusätzlich beschrieben, wie die Lochkamera mit einem…

Zum Download
Download ( Unterrichtsmaterial )

Eine Lochkamera lässt sich mit Ton- und Transpanrentpapier selbst bauen. In dieser Anleitung ist zusätzlich beschrieben, wie die Lochkamera mit einem…

Zum Download

Kran aus der Römerzeit - Aufgabe (Animation)

Download ( Animationen )

Die Animation zeigt den Aufbau und die Funktionsweise eines Krans aus der Römerzeit.

Zum Download
Download ( Animationen )

Die Animation zeigt den Aufbau und die Funktionsweise eines Krans aus der Römerzeit.

Zum Download

Kran aus der Römerzeit - Lösung (Animation)

Download ( Animationen )

Die Animation zeigt den Aufbau und die Funktionsweise eines Krans aus der Römerzeit.

Zum Download
Download ( Animationen )

Die Animation zeigt den Aufbau und die Funktionsweise eines Krans aus der Römerzeit.

Zum Download

OHMsches Gesetz - Formelumstellung (Animation)

Download ( Animationen )

Die Animation zeigt das schrittweise Auflösen der Formel für das OHMsche Gesetz nach den drei in der Formel auftretenden Größen.

Zum Download
Download ( Animationen )

Die Animation zeigt das schrittweise Auflösen der Formel für das OHMsche Gesetz nach den drei in der Formel auftretenden Größen.

Zum Download

Blattfederpendel stehend (Animation)

Download ( Animationen )

Die Animation zeigt die Bewegung eines stehenden Blattfederpendels und einige Größen, die zur Beschreibung der Bewegung wichtig sind.

Zum Download
Download ( Animationen )

Die Animation zeigt die Bewegung eines stehenden Blattfederpendels und einige Größen, die zur Beschreibung der Bewegung wichtig sind.

Zum Download

Prallender Ball (Animation)

Download ( Animationen )

Die Animation zeigt die Bewegung eines prallenden Balls und einige Größen, die zur Beschreibung der Bewegung wichtig sind.

Zum Download
Download ( Animationen )

Die Animation zeigt die Bewegung eines prallenden Balls und einige Größen, die zur Beschreibung der Bewegung wichtig sind.

Zum Download

Trampolin (Animation)

Download ( Animationen )

Die Animation zeigt die Bewegung eines Körpers auf einem Trampolin und einige Größen, die zur Beschreibung der Bewegung wichtig sind.

Zum Download
Download ( Animationen )

Die Animation zeigt die Bewegung eines Körpers auf einem Trampolin und einige Größen, die zur Beschreibung der Bewegung wichtig sind.

Zum Download

Feder-Schwere-Pendel (Animation)

Download ( Animationen )

Die Animation zeigt die Bewegung eines Feder-Schwere-Pendels und einige Größen, die zur Beschreibung der Bewegung wichtig sind.

Zum Download
Download ( Animationen )

Die Animation zeigt die Bewegung eines Feder-Schwere-Pendels und einige Größen, die zur Beschreibung der Bewegung wichtig sind.

Zum Download

Feder-Schwere-Pendel - Detail (Animation)

Download ( Animationen )

Die Animation zeigt die Bewegung eines Feder-Schwere-Pendels und insbesondere die Größen, die zur Beschreibung der Federkraft wichtig sind.

Zum Download
Download ( Animationen )

Die Animation zeigt die Bewegung eines Feder-Schwere-Pendels und insbesondere die Größen, die zur Beschreibung der Federkraft wichtig sind.

Zum Download

Fadenpendel - Graphen (Animation)

Download ( Animationen )

Die Animation zeigt die Graphen von Ort, Geschwindigkeit, Beschleunigung, rücktreibender Kraft, tangentialer Komponente der Gewichtskraft,…

Zum Download
Download ( Animationen )

Die Animation zeigt die Graphen von Ort, Geschwindigkeit, Beschleunigung, rücktreibender Kraft, tangentialer Komponente der Gewichtskraft,…

Zum Download

Feder-Schwere-Pendel - Graphen (Animation)

Download ( Animationen )

Die Animation zeigt die Graphen von Ort, Geschwindigkeit, Beschleunigung, Gewichts-, Feder- und rücktreibender Kraft sowie kinetischer, potentieller…

Zum Download
Download ( Animationen )

Die Animation zeigt die Graphen von Ort, Geschwindigkeit, Beschleunigung, Gewichts-, Feder- und rücktreibender Kraft sowie kinetischer, potentieller…

Zum Download

Schwingende Boje - Gesamt (Animation)

Download ( Animationen )

Die Animation zeigt die Bewegung einer schwingenden Boje im Wasser und einige Größen, die zur Beschreibung der Bewegung wichtig sind.

Zum Download
Download ( Animationen )

Die Animation zeigt die Bewegung einer schwingenden Boje im Wasser und einige Größen, die zur Beschreibung der Bewegung wichtig sind.

Zum Download

Schwingende Boje - Detail (Animation)

Download ( Animationen )

Die Animation zeigt die Bewegung einer schwingenden Boje im Wasser und insbesondere die Größen, die zur Beschreibung der Auftriebskraft wichtig sind.

Zum Download
Download ( Animationen )

Die Animation zeigt die Bewegung einer schwingenden Boje im Wasser und insbesondere die Größen, die zur Beschreibung der Auftriebskraft wichtig sind.

Zum Download

Blattfederpendel hängend (Animation)

Download ( Animationen )

Die Animation zeigt die Bewegung eines hängenden Blattfederpendels und einige Größen, die zur Beschreibung der Bewegung wichtig sind.

Zum Download
Download ( Animationen )

Die Animation zeigt die Bewegung eines hängenden Blattfederpendels und einige Größen, die zur Beschreibung der Bewegung wichtig sind.

Zum Download

Kapazität eines Plattenkondensators (Simulation)

Download ( Simulation )

Die Simulation wird zur Verfügung gestellt von: PhET Interactive Simulations University of Colorado Boulder https://phet.colorado.edu Informationen…

Zum Download
Download ( Simulation )

Die Simulation wird zur Verfügung gestellt von: PhET Interactive Simulations University of Colorado Boulder https://phet.colorado.edu Informationen…

Zum Download