Direkt zum Inhalt
Suchergebnisse 481 - 510 von 637

Induktion durch Änderung des Flächeninhalts (Simulation)

Versuche

  • Die Simulation ermöglicht die Untersuchung der Abhängigkeit der Induktionsspannung von der Änderung des Flächeninhalts.

Zum Artikel
Versuche

  • Die Simulation ermöglicht die Untersuchung der Abhängigkeit der Induktionsspannung von der Änderung des Flächeninhalts.

Zum Artikel Zu den Aufgaben

Induktion durch Änderung der Winkelweite (Simulation)

Versuche

  • Die Simulation ermöglicht die Untersuchung der Abhängigkeit der Induktionsspannung von der Änderung der Winkelweite.

Zum Artikel
Versuche

  • Die Simulation ermöglicht die Untersuchung der Abhängigkeit der Induktionsspannung von der Änderung der Winkelweite.

Zum Artikel Zu den Aufgaben

Induktion durch Änderung der magnetischen Flussdichte

Grundwissen

In einer Induktionsanordnung gelten folgende Bedingungen:

  • die Richtung des magnetischen Feldvektors \(\vec B\) des homogenen magnetischen Feldes ist konstant
  • der Flächenvektor \(\vec A\) der (Teil-)Fläche der Leiterschleife oder der Spule mit Windungszahl \(N\), die sich im magnetischen Feld befindet, ist konstant
  • die Weite \(\varphi\) des Winkels zwischen dem Feldvektor \(\vec B\) und dem Flächenvektor \(\vec A\) ist damit ebenfalls konstant.

Wenn sich die magnetische Flussdichte \(B\) mit der Änderungsrate \(\frac{dB}{dt}\) ändert, dann berechnet sich die Induktionsspannung \(U_{\rm{i}}\) durch \(U_{\rm{i}}\left(t\right) =  - N \cdot \frac{dB}{dt} \cdot A \cdot \cos\left(\varphi\right)\).

Zum Artikel Zu den Aufgaben
Grundwissen

In einer Induktionsanordnung gelten folgende Bedingungen:

  • die Richtung des magnetischen Feldvektors \(\vec B\) des homogenen magnetischen Feldes ist konstant
  • der Flächenvektor \(\vec A\) der (Teil-)Fläche der Leiterschleife oder der Spule mit Windungszahl \(N\), die sich im magnetischen Feld befindet, ist konstant
  • die Weite \(\varphi\) des Winkels zwischen dem Feldvektor \(\vec B\) und dem Flächenvektor \(\vec A\) ist damit ebenfalls konstant.

Wenn sich die magnetische Flussdichte \(B\) mit der Änderungsrate \(\frac{dB}{dt}\) ändert, dann berechnet sich die Induktionsspannung \(U_{\rm{i}}\) durch \(U_{\rm{i}}\left(t\right) =  - N \cdot \frac{dB}{dt} \cdot A \cdot \cos\left(\varphi\right)\).

Zum Artikel Zu den Aufgaben

Induktion durch Änderung des Flächeninhalts

Grundwissen

In einer Induktionsanordnung gelten folgende Bedingungen:

  • der Feldvektor \(\vec B\) (und damit die Richtung, die Orientierung und die Flussdichte) des homogenen magnetischen Feldes ist konstant
  • die Richtung und die Orientierung des Flächenvektors \(\vec A\) des Teils der Leiterschleife, der vom magnetische Feld durchsetzt wird, sind konstant
  • die Weite \(\varphi\) des Winkels zwischen Flächenvektor \(\vec A\) und Feldvektor \(\vec B\) ist konstant

Wenn sich der Betrag \(A\), d.h. der Inhalt der Fläche des Teils der Leiterschleife oder Spule mit Windungszahl \(N\), die vom magnetischen Feld durchsetzt wird, mit der Änderungsrate \(\frac{dA}{dt}\) ändert, dann berechnet sich die Induktionsspannung \(U_{\rm{i}}\) durch \(U_{\rm{i}} =  - N \cdot B \cdot \frac{dA}{dt} \cdot \cos\left(\varphi\right)\).

Zum Artikel Zu den Aufgaben
Grundwissen

In einer Induktionsanordnung gelten folgende Bedingungen:

  • der Feldvektor \(\vec B\) (und damit die Richtung, die Orientierung und die Flussdichte) des homogenen magnetischen Feldes ist konstant
  • die Richtung und die Orientierung des Flächenvektors \(\vec A\) des Teils der Leiterschleife, der vom magnetische Feld durchsetzt wird, sind konstant
  • die Weite \(\varphi\) des Winkels zwischen Flächenvektor \(\vec A\) und Feldvektor \(\vec B\) ist konstant

Wenn sich der Betrag \(A\), d.h. der Inhalt der Fläche des Teils der Leiterschleife oder Spule mit Windungszahl \(N\), die vom magnetischen Feld durchsetzt wird, mit der Änderungsrate \(\frac{dA}{dt}\) ändert, dann berechnet sich die Induktionsspannung \(U_{\rm{i}}\) durch \(U_{\rm{i}} =  - N \cdot B \cdot \frac{dA}{dt} \cdot \cos\left(\varphi\right)\).

Zum Artikel Zu den Aufgaben

Induktion durch Änderung der Winkelweite

Grundwissen

In einer Induktionsanordnung gelten folgende Bedingungen:

  • die magnetische Flussdichte \(B\) des homogenen magnetischen Feldes ist konstant
  • der Flächeninhalt \(A\) der (Teil-)Fläche der Leiterschleife oder Spule mit der Windungszahl \(N\), die sich im magnetischen Feld befindet, ist konstant

Wenn sich die Richtung oder die Orientierung des Feldvektors \(\vec B\) oder des Flächenvektors \(\vec A\) und damit die Weite \(\varphi\) des Winkels zwischen dem Feldvektor \(\vec B\) und dem Flächenvektor \(\vec A\) mit der Änderungsrate \(\frac{d \varphi}{dt}\) ändert, dann berechnet sich die Induktionsspannung \(U_{\rm{i}}\) durch \(U_{\rm{i}} =  N \cdot B \cdot A \cdot \frac{d \varphi}{dt} \cdot \sin\left(\varphi\right)\).

Zum Artikel Zu den Aufgaben
Grundwissen

In einer Induktionsanordnung gelten folgende Bedingungen:

  • die magnetische Flussdichte \(B\) des homogenen magnetischen Feldes ist konstant
  • der Flächeninhalt \(A\) der (Teil-)Fläche der Leiterschleife oder Spule mit der Windungszahl \(N\), die sich im magnetischen Feld befindet, ist konstant

Wenn sich die Richtung oder die Orientierung des Feldvektors \(\vec B\) oder des Flächenvektors \(\vec A\) und damit die Weite \(\varphi\) des Winkels zwischen dem Feldvektor \(\vec B\) und dem Flächenvektor \(\vec A\) mit der Änderungsrate \(\frac{d \varphi}{dt}\) ändert, dann berechnet sich die Induktionsspannung \(U_{\rm{i}}\) durch \(U_{\rm{i}} =  N \cdot B \cdot A \cdot \frac{d \varphi}{dt} \cdot \sin\left(\varphi\right)\).

Zum Artikel Zu den Aufgaben

Induktionserscheinungen

Grundwissen

Induktionsspannungen \(U_{\rm{i}}\) kann man beobachten, wenn sich in einer Induktionsanordnung (ein magnetisches Feld und eine Leiterschleife mit angeschlossenem Spannungsmesser) eine der folgenden Größe ändert:

  • die magnetische Flussdichte \(B\) des magnetischen Feldes
  • der Inhalt \(A\) der Fläche der Leiterschleife, die vom magnetischen Feld durchsetzt wird
  • die Weite \(\varphi\) des Winkels zwischen dem magnetischem Feld und der Leiterschleife

Zum Artikel
Grundwissen

Induktionsspannungen \(U_{\rm{i}}\) kann man beobachten, wenn sich in einer Induktionsanordnung (ein magnetisches Feld und eine Leiterschleife mit angeschlossenem Spannungsmesser) eine der folgenden Größe ändert:

  • die magnetische Flussdichte \(B\) des magnetischen Feldes
  • der Inhalt \(A\) der Fläche der Leiterschleife, die vom magnetischen Feld durchsetzt wird
  • die Weite \(\varphi\) des Winkels zwischen dem magnetischem Feld und der Leiterschleife

Zum Artikel Zu den Aufgaben

Selbstinduktion (Messwerterfassung)

Versuche

  • Nachweis des allmählichen Stromanstiegs beim Anlegen einer Spannung an eine Spule.
  • Analyse der Selbstinduktion beim Ein- und Ausschalten.
  • Verdeutlichung des Einflusses des Widerstandes auf Ausschaltstrom und Induktionsspannung.

Zum Artikel
Versuche

  • Nachweis des allmählichen Stromanstiegs beim Anlegen einer Spannung an eine Spule.
  • Analyse der Selbstinduktion beim Ein- und Ausschalten.
  • Verdeutlichung des Einflusses des Widerstandes auf Ausschaltstrom und Induktionsspannung.

Zum Artikel Zu den Aufgaben

Größen zur Beschreibung einer (elektromagnetischen) Welle

Grundwissen

  • Amplitude \(\hat E\), Schwingungsdauer \(T\) bzw. Frequenz \(f\) und Intensität \(I\) sind zentrale Größen zur Beschreibung einer elektromagnetischen Welle.
  • Für die Wellenlänge gilt \(\lambda=\frac{c}{f}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Amplitude \(\hat E\), Schwingungsdauer \(T\) bzw. Frequenz \(f\) und Intensität \(I\) sind zentrale Größen zur Beschreibung einer elektromagnetischen Welle.
  • Für die Wellenlänge gilt \(\lambda=\frac{c}{f}\).

Zum Artikel Zu den Aufgaben

Aktuelle Charts und Grafiken zur Stromerzeugung, installierten Leistung usw.

Weblink

Informative, aktuelle und übersichtliche interaktive Grafiken des Frauenhofer Instituts rund um die Stromerzeugung in Deutschland. Auch die zeitliche Entwicklung verschiedener Energieträger kann mit Hilfe der Grafiker sehr gut deutlich gemacht werden.

Zum externen Weblink
Weblink

Informative, aktuelle und übersichtliche interaktive Grafiken des Frauenhofer Instituts rund um die Stromerzeugung in Deutschland. Auch die zeitliche Entwicklung verschiedener Energieträger kann mit Hilfe der Grafiker sehr gut deutlich gemacht werden.

Zum externen Weblink

Spezifischer Widerstand

Grundwissen

  • Der spezifische Widerstand \(\rho\) ist eine Materialkonstante des verwendeten Materials.
  • Für den spezifische Widerstand gilt \(\rho  = \frac{{R \cdot A}}{l}\), der Widerstand eines Leiters berechnet man mittels \(R = \rho  \cdot \frac{l}{A}\).
  • Gute Leiter wie Silber oder Kupfer haben einen geringen spezifischen Widerstand, Isolatoren einen sehr hohen spezifischen Widerstand.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Der spezifische Widerstand \(\rho\) ist eine Materialkonstante des verwendeten Materials.
  • Für den spezifische Widerstand gilt \(\rho  = \frac{{R \cdot A}}{l}\), der Widerstand eines Leiters berechnet man mittels \(R = \rho  \cdot \frac{l}{A}\).
  • Gute Leiter wie Silber oder Kupfer haben einen geringen spezifischen Widerstand, Isolatoren einen sehr hohen spezifischen Widerstand.

Zum Artikel Zu den Aufgaben

Schwingkreis mit Messwerterfassung

Versuche

  • Untersuchung von Spannungs- und Stromverlauf beim Schwingkreis
  • Untersuchung des Einflusses der Kondensatorkapazität auf die Schwingungsfrequenz

Zum Artikel
Versuche

  • Untersuchung von Spannungs- und Stromverlauf beim Schwingkreis
  • Untersuchung des Einflusses der Kondensatorkapazität auf die Schwingungsfrequenz

Zum Artikel Zu den Aufgaben

Gedämpfter Schwingkreis mit Messwerterfassung

Versuche

  • Veranschaulichung des Einflusses des Widerstandes im Schwingkreis auf die Abnahme der Schwingung
  • Demonstration von Kriechfall bzw. aperiodischem Grenzfall

Zum Artikel
Versuche

  • Veranschaulichung des Einflusses des Widerstandes im Schwingkreis auf die Abnahme der Schwingung
  • Demonstration von Kriechfall bzw. aperiodischem Grenzfall

Zum Artikel Zu den Aufgaben

Kurze Einführung in die Geschichte des Maßes

Weblink

Prof. André Bresges, Professor für Physik an der Universität Köln, gibt einen kurzen Einblick in die Geschichte des Maßes in der katholischen Kirche und leitet einen kleinen Selbstversuch zum Thema Messen in der Physik an.

Zur Übersicht Zum externen Weblink
Weblink

Prof. André Bresges, Professor für Physik an der Universität Köln, gibt einen kurzen Einblick in die Geschichte des Maßes in der katholischen Kirche und leitet einen kleinen Selbstversuch zum Thema Messen in der Physik an.

Zur Übersicht Zum externen Weblink

Gültige Ziffern mit Zehnerpotenzen

Grundwissen

  • Manchmal ist die Angabe der Lösung mit der richtigen Anzahl der gültigen Ziffern nicht direkt möglich.
  • Die Umwandlung in eine größere Einheit ist eine Lösungsmöglichkeit.
  • Durch den Einsatz von Zehnerpotenzen kannst du die Anzahl der gültigen Ziffern immer richtig angeben.

Zum Artikel
Grundwissen

  • Manchmal ist die Angabe der Lösung mit der richtigen Anzahl der gültigen Ziffern nicht direkt möglich.
  • Die Umwandlung in eine größere Einheit ist eine Lösungsmöglichkeit.
  • Durch den Einsatz von Zehnerpotenzen kannst du die Anzahl der gültigen Ziffern immer richtig angeben.

Zum Artikel Zu den Aufgaben

Exponentialfunktionen auswerten

Grundwissen

  • Exponentialfunktionen haben die Form \(f(x)=a\cdot b^x\) bzw. mittels \(e\)-Funktion ausgedrückt \(f(x) = a \cdot e^{k \cdot x}\)
  • Aus Messwerten kannst du die zugrundeliegende Exponentialfunktion mittels exponentieller Regression ermitteln.
  • Bei Zerfallskurven, bei Absorptionskurven und bei Entladekurven von Kondensatoren handelt es sich um Exponentialfunktionen.

Zum Artikel
Grundwissen

  • Exponentialfunktionen haben die Form \(f(x)=a\cdot b^x\) bzw. mittels \(e\)-Funktion ausgedrückt \(f(x) = a \cdot e^{k \cdot x}\)
  • Aus Messwerten kannst du die zugrundeliegende Exponentialfunktion mittels exponentieller Regression ermitteln.
  • Bei Zerfallskurven, bei Absorptionskurven und bei Entladekurven von Kondensatoren handelt es sich um Exponentialfunktionen.

Zum Artikel Zu den Aufgaben

Zusammenfassen von Proportionalitäten

Grundwissen

  • Mehrere Proportionalitäten zu einer Größe kannst du zusammenfassen.
  • Sind z.B. die Größen \(a\) und \(b\) proportional zu \(y\), so ist auch \(a\cdot b\) proportional zu \(y\).
  • Umgekehrte Proportionalitäten kannst du ebenso zusammenfassen.

Zum Artikel
Grundwissen

  • Mehrere Proportionalitäten zu einer Größe kannst du zusammenfassen.
  • Sind z.B. die Größen \(a\) und \(b\) proportional zu \(y\), so ist auch \(a\cdot b\) proportional zu \(y\).
  • Umgekehrte Proportionalitäten kannst du ebenso zusammenfassen.

Zum Artikel Zu den Aufgaben

SI-Basisgrößen und -einheiten

Grundwissen
Grundwissen

Lösen von Gleichungen - Fortführung

Grundwissen
Grundwissen

Rechenaufgaben

Grundwissen

  • Bei Rechenaufgaben in der Physik hilft ein strukturiertes Vorgehen.
  • Notiere zuerst die gegebenen und gesuchten Größen und rechne jeweils in die Basiseinheit um.
  • Stelle die Formel zuerst allgemein nach der gesuchten Größe um und setze erst dann die gegebenen Größen ein.

Zum Artikel
Grundwissen

  • Bei Rechenaufgaben in der Physik hilft ein strukturiertes Vorgehen.
  • Notiere zuerst die gegebenen und gesuchten Größen und rechne jeweils in die Basiseinheit um.
  • Stelle die Formel zuerst allgemein nach der gesuchten Größe um und setze erst dann die gegebenen Größen ein.

Zum Artikel Zu den Aufgaben

Erstellen von Diagrammen

Grundwissen

  • Für ein Diagramm benötigst du zunächst zusammengehörige Messwerte zweier Größen (meist aus einem Experiment).
  • Die im Diagramm zuerst genannte Größe kommt auf die Rechtswertachse, die zweite Größe auf die Hochwertachse.
  • Durch die Messpunkte wird im Diagramm eine möglichst glatten Kurve ohne Ecken und Knicke gezeichnet, wobei nicht alle Punkte genau auf der Kurve liegen müssen (Messfehler).

Zum Artikel
Grundwissen

  • Für ein Diagramm benötigst du zunächst zusammengehörige Messwerte zweier Größen (meist aus einem Experiment).
  • Die im Diagramm zuerst genannte Größe kommt auf die Rechtswertachse, die zweite Größe auf die Hochwertachse.
  • Durch die Messpunkte wird im Diagramm eine möglichst glatten Kurve ohne Ecken und Knicke gezeichnet, wobei nicht alle Punkte genau auf der Kurve liegen müssen (Messfehler).

Zum Artikel Zu den Aufgaben

Auswerten von Diagrammen - Einführung

Grundwissen

  • Messwerte werden zur Auswertung oft in ein Diagramm eingetragen. Je nach Lage wird dann eine Ausgleichsgerade oder eine Kurve im Diagramm ergänzt.
  • Mit Hilfe der Ausgleichsgeraden oder Kurve können weitere Wertepaare im Bereich der Messwerte bestimmt (interpoliert) werden.
  • Eine Verlängerung der Ausgleichsgeraden oder Kurve deutlich über den Bereich der Messwerte hinaus ist meist nicht zulässig.

Zum Artikel
Grundwissen

  • Messwerte werden zur Auswertung oft in ein Diagramm eingetragen. Je nach Lage wird dann eine Ausgleichsgerade oder eine Kurve im Diagramm ergänzt.
  • Mit Hilfe der Ausgleichsgeraden oder Kurve können weitere Wertepaare im Bereich der Messwerte bestimmt (interpoliert) werden.
  • Eine Verlängerung der Ausgleichsgeraden oder Kurve deutlich über den Bereich der Messwerte hinaus ist meist nicht zulässig.

Zum Artikel Zu den Aufgaben

Lösen von Gleichungen - Einführung

Grundwissen
Grundwissen

Physikalische Konstanten

Grundwissen
Grundwissen

Umgekehrte Proportionalität

Grundwissen

  • Bei zwei zueinander umgekehrt proportionalen Größen gehört zum Doppelten, Dreifachen, ... n-fachen der Größe \(x\) die Hälfte, ein Drittel, ... ein n-tel der Größe \(y\).
  • Zwei zueinander umgekehrt proportionale Größen sind produktgleich. Das Produkt \(x\cdot y\) nennt man die Proportionalitätskonstante (Proportionalitätsfaktor).
  • Anstelle des Begriffs umgekehrt proportional werden auch die Begriffe antiproportional und indirekt proportional genutzt.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei zwei zueinander umgekehrt proportionalen Größen gehört zum Doppelten, Dreifachen, ... n-fachen der Größe \(x\) die Hälfte, ein Drittel, ... ein n-tel der Größe \(y\).
  • Zwei zueinander umgekehrt proportionale Größen sind produktgleich. Das Produkt \(x\cdot y\) nennt man die Proportionalitätskonstante (Proportionalitätsfaktor).
  • Anstelle des Begriffs umgekehrt proportional werden auch die Begriffe antiproportional und indirekt proportional genutzt.

Zum Artikel Zu den Aufgaben

Zehnerpotenzen - Präfixe

Grundwissen

  • Mit Zehnerpotenzen kannst du sehr große und sehr kleine Größen übersichtlich schreiben.
  • Auch mit passenden Präfixen (Vorsilben) vor der Einheit kannst du Größen übersichtlich angeben.

Zum Artikel
Grundwissen

  • Mit Zehnerpotenzen kannst du sehr große und sehr kleine Größen übersichtlich schreiben.
  • Auch mit passenden Präfixen (Vorsilben) vor der Einheit kannst du Größen übersichtlich angeben.

Zum Artikel Zu den Aufgaben

Potenzschreibweise

Grundwissen

  • Sehr große und sehr kleine Zahlen kannst du mithilfe von Zehnerpotenzen übersichtlich darstellen.
  • Beispiele: \(13000000=1{,}3\cdot 10^7\) und \(0{,}0000123=1{,}23\cdot 10^{-5}\)

Zum Artikel
Grundwissen

  • Sehr große und sehr kleine Zahlen kannst du mithilfe von Zehnerpotenzen übersichtlich darstellen.
  • Beispiele: \(13000000=1{,}3\cdot 10^7\) und \(0{,}0000123=1{,}23\cdot 10^{-5}\)

Zum Artikel Zu den Aufgaben

Direkte Proportionalität

Grundwissen

  • Bei zwei zueinander direkt proportionalen Größen gehört zum Doppelten, Dreifachen, . . . n-fachen der Größe \(x\) das Doppelte, Dreifache, . . .n-fache der Größe \(y\).
  • Zwei zueinander direkt proportionale Größen sind quotientengleich. Den Quotienten \(\frac{y}{x}\) nennt man die Proportionalitätskonstante (bzw. den Proportionalitätsfaktor).
  • Sind zwei Größen zueinander direkt proportional, so ergibt ihre Darstellung in einem Diagramm eine Halbgerade durch den Ursprung.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei zwei zueinander direkt proportionalen Größen gehört zum Doppelten, Dreifachen, . . . n-fachen der Größe \(x\) das Doppelte, Dreifache, . . .n-fache der Größe \(y\).
  • Zwei zueinander direkt proportionale Größen sind quotientengleich. Den Quotienten \(\frac{y}{x}\) nennt man die Proportionalitätskonstante (bzw. den Proportionalitätsfaktor).
  • Sind zwei Größen zueinander direkt proportional, so ergibt ihre Darstellung in einem Diagramm eine Halbgerade durch den Ursprung.

Zum Artikel Zu den Aufgaben

Größen, Basisgrößen und abgeleitete Größen

Grundwissen

  • Physikalische Größen bestehen immer aus einem Formelzeichen, einer Maßzahl und einer Maßeinheit. Beispiel: \(l=5{,}0\,\rm{m}\)
  • Es gibt sieben Basisgrößen über die alle anderen Größen definiert werden: Zeit, Länge, Masse, Stromstärke, Temperatur, Stoffmenge und Lichtstärke.
  • Die Einheit einer abgeleiteten Größe ergibt sich aus Rechnung mit den Einheiten der zugrundeliegenden Größen, z.B. beim Flächeninhalt: \(\left[ A \right] = \left[ l \right] \cdot \left[ b \right] = 1{\rm{m}} \cdot {\rm{m}} = 1{{\rm{m}}^{\rm{2}}}\)

Zum Artikel
Grundwissen

  • Physikalische Größen bestehen immer aus einem Formelzeichen, einer Maßzahl und einer Maßeinheit. Beispiel: \(l=5{,}0\,\rm{m}\)
  • Es gibt sieben Basisgrößen über die alle anderen Größen definiert werden: Zeit, Länge, Masse, Stromstärke, Temperatur, Stoffmenge und Lichtstärke.
  • Die Einheit einer abgeleiteten Größe ergibt sich aus Rechnung mit den Einheiten der zugrundeliegenden Größen, z.B. beim Flächeninhalt: \(\left[ A \right] = \left[ l \right] \cdot \left[ b \right] = 1{\rm{m}} \cdot {\rm{m}} = 1{{\rm{m}}^{\rm{2}}}\)

Zum Artikel Zu den Aufgaben

Genauigkeitsangaben und gültige Ziffern

Grundwissen

  • (Gemessene) physikalische Größen sind in der Regel mit Unsicherheit verbunden.
  • Die Zahl der gültigen Ziffern ergibt sich durch Zählung aller Stellen ab der ersten von Null verschiedenen Ziffer nach rechts.
  • Die Größe mit den wenigsten gültigen Ziffern bestimmt mit ihrer Anzahl an gültigen Ziffern auch die Anzahl der gültigen Ziffern bei der Berechnung eines Produktes oder Quotienten aus mehreren Größen.
  • Manchmal muss du Zehnerpotenzen verwenden, um die Anzahl der gültigen Ziffern korrekt anzugeben.

Zum Artikel
Grundwissen

  • (Gemessene) physikalische Größen sind in der Regel mit Unsicherheit verbunden.
  • Die Zahl der gültigen Ziffern ergibt sich durch Zählung aller Stellen ab der ersten von Null verschiedenen Ziffer nach rechts.
  • Die Größe mit den wenigsten gültigen Ziffern bestimmt mit ihrer Anzahl an gültigen Ziffern auch die Anzahl der gültigen Ziffern bei der Berechnung eines Produktes oder Quotienten aus mehreren Größen.
  • Manchmal muss du Zehnerpotenzen verwenden, um die Anzahl der gültigen Ziffern korrekt anzugeben.

Zum Artikel Zu den Aufgaben