Direkt zum Inhalt
Suchergebnisse 121 - 150 von 247

Effekte

Grundwissen

  • Zeitdilatation: Eine bewegte Uhr geht langsamer als eine gleichartige im Ruhesystem!
  • Gleichzeitigkeit ist relativ und hängt davon ab, von welchem Bezugssystem aus die Beobachtung erfolgt.
  • Längenkontraktion: Ein bewegter Maßstab ist in Bewegungsrichtung kürzer als im Ruhesystem!

Zum Artikel
Grundwissen

  • Zeitdilatation: Eine bewegte Uhr geht langsamer als eine gleichartige im Ruhesystem!
  • Gleichzeitigkeit ist relativ und hängt davon ab, von welchem Bezugssystem aus die Beobachtung erfolgt.
  • Längenkontraktion: Ein bewegter Maßstab ist in Bewegungsrichtung kürzer als im Ruhesystem!

Zum Artikel Zu den Aufgaben

Zeitdilatation

Grundwissen

  • Zeitdilatation: Eine relativ zu einem Beobachter bewegte Uhr geht aus der Sicht des Beobachters langsamer als ein Satz synchronisierter Uhren im "Beobachter-System".
  • Vereinfacht: Bewegte Uhren gehen langsamer.
  • Der Zusammenhang zwischen Zeit \(\Delta t\) im ruhenden und \(\Delta t'\) im bewegten System ist \(\Delta t = \frac{\Delta t'}{\sqrt{1 - (\frac{v}{c})^2}}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Zeitdilatation: Eine relativ zu einem Beobachter bewegte Uhr geht aus der Sicht des Beobachters langsamer als ein Satz synchronisierter Uhren im "Beobachter-System".
  • Vereinfacht: Bewegte Uhren gehen langsamer.
  • Der Zusammenhang zwischen Zeit \(\Delta t\) im ruhenden und \(\Delta t'\) im bewegten System ist \(\Delta t = \frac{\Delta t'}{\sqrt{1 - (\frac{v}{c})^2}}\)

Zum Artikel Zu den Aufgaben

Gleichzeitigkeit

Grundwissen

  • In einem Inertialsystem finden zwei Ereignisse an zwei verschiedenen Orten gleichzeitig statt, wenn sie von einem Lichtblitz ausgelöst werden können, der genau aus der Mitte zwischen ihren Orten ausgeht.
  • Finden zwei Ereignisse in einem Inertialsystem gleichzeitig statt, so finden sie in einem zweiten, gegenüber dem ersten Inertialsystem bewegten Inertialsystem zu verschiedenen Zeiten statt.
  • Auch Gleichzeitigkeit ist relativ.

Zum Artikel Zu den Aufgaben
Grundwissen

  • In einem Inertialsystem finden zwei Ereignisse an zwei verschiedenen Orten gleichzeitig statt, wenn sie von einem Lichtblitz ausgelöst werden können, der genau aus der Mitte zwischen ihren Orten ausgeht.
  • Finden zwei Ereignisse in einem Inertialsystem gleichzeitig statt, so finden sie in einem zweiten, gegenüber dem ersten Inertialsystem bewegten Inertialsystem zu verschiedenen Zeiten statt.
  • Auch Gleichzeitigkeit ist relativ.

Zum Artikel Zu den Aufgaben

Relativistische Masse und Impuls

Grundwissen

  • Auch die Masse eines Teilchens und sein Impuls unterliegen relativistischen Effekten.
  • Die relativistische Masse  nimmt mit der Geschwindigkeit \(v\) eines Teilchens stark zu, es gilt: \(m_{\rm{rel}}=\frac{m_0}{\sqrt{1 - \left(\frac{v}{c}\right)^2}}\)
  • Für den relativistischen Impuls gilt \(p = m_{\rm{rel}}\cdot v    \Rightarrow     p = \frac{m_0}{\sqrt{1 - \left(\frac{v}{c}\right)^2}} \cdot v\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Auch die Masse eines Teilchens und sein Impuls unterliegen relativistischen Effekten.
  • Die relativistische Masse  nimmt mit der Geschwindigkeit \(v\) eines Teilchens stark zu, es gilt: \(m_{\rm{rel}}=\frac{m_0}{\sqrt{1 - \left(\frac{v}{c}\right)^2}}\)
  • Für den relativistischen Impuls gilt \(p = m_{\rm{rel}}\cdot v    \Rightarrow     p = \frac{m_0}{\sqrt{1 - \left(\frac{v}{c}\right)^2}} \cdot v\)

Zum Artikel Zu den Aufgaben

Masse-Energie Äquivalenz (Video)

Versuche
Versuche

Spezielle Relativitätstheorie (Video)

Versuche
Versuche

MICHELSON-MORLEY-Experiment

Versuche

  • Bestimmung der Geschwindigkeit der Erde im Lichtäther
  • Ergebnis: Die Lichtgeschwindigkeit bleibt entgegen der Erwartungen konstant
  • Folgerungen: Es gibt keinen Lichtäther 

Zum Artikel
Versuche

  • Bestimmung der Geschwindigkeit der Erde im Lichtäther
  • Ergebnis: Die Lichtgeschwindigkeit bleibt entgegen der Erwartungen konstant
  • Folgerungen: Es gibt keinen Lichtäther 

Zum Artikel Zu den Aufgaben

Myonenexperiment von ROSSI und HALL

Versuche
Versuche

Zeitdilatation (Simulation)

Versuche
Versuche

Video zur Allgemeinen Relativitätstheorie

Ausblick
Ausblick

Geschwindigkeitsaddition

Grundwissen

  • Ist \(u\) die Geschwindigkeit eines Körpers im System S und \(v\) die Geschwindigkeit des Systems S' in Bezug auf S und \(u'\) die Geschwindigkeit des Körpers im System S', dann gilt der Zusammenhang \(u = \frac{{u' + v}}{{1 + \frac{{u' \cdot v}}{{{c^2}}}}}\).

 

 

 

Zum Artikel
Grundwissen

  • Ist \(u\) die Geschwindigkeit eines Körpers im System S und \(v\) die Geschwindigkeit des Systems S' in Bezug auf S und \(u'\) die Geschwindigkeit des Körpers im System S', dann gilt der Zusammenhang \(u = \frac{{u' + v}}{{1 + \frac{{u' \cdot v}}{{{c^2}}}}}\).

 

 

 

Zum Artikel Zu den Aufgaben

Video zu den Chladnischen Klangfiguren

Weblink

Dieses Video zeigt Chladnische Klangfiguren, die bei der Anregung einer mit Sand bestreuten Metallplatte durch einen Geigenbogen entstehen. Das Video wurde von der Ecole Science als Open Educational Resource (OER) veröffentlicht.

Zur Übersicht Zum externen Weblink
Weblink

Dieses Video zeigt Chladnische Klangfiguren, die bei der Anregung einer mit Sand bestreuten Metallplatte durch einen Geigenbogen entstehen. Das Video wurde von der Ecole Science als Open Educational Resource (OER) veröffentlicht.

Zur Übersicht Zum externen Weblink

Sammlung interaktiver Experimente zum Franck-Hertz-Versuch

Weblink

In dieser Sammlung an interaktiven Bildschirmexperimenten (IBE) könnt ihr den Franck-Hertz-Versuch selbst und interaktiv durchführen. In verschiedenen Experimenten und Messaufbauten könnt ihr von zuhause den Versuch sowohl mit Quecksilber als auch mit Neon durchführen und auswerten.
Zwischen den Experimenten könnt ihr durch Anklicken der Themen oder mit den Pfeilen unten rechts und links auf der Seite navigieren. Diese Experimente stammen von der AG Didaktik der Physik der Universität Berlin.

Zur Übersicht Zum externen Weblink
Weblink

In dieser Sammlung an interaktiven Bildschirmexperimenten (IBE) könnt ihr den Franck-Hertz-Versuch selbst und interaktiv durchführen. In verschiedenen Experimenten und Messaufbauten könnt ihr von zuhause den Versuch sowohl mit Quecksilber als auch mit Neon durchführen und auswerten.
Zwischen den Experimenten könnt ihr durch Anklicken der Themen oder mit den Pfeilen unten rechts und links auf der Seite navigieren. Diese Experimente stammen von der AG Didaktik der Physik der Universität Berlin.

Zur Übersicht Zum externen Weblink

Sammlung interaktiver Experimente zur Röntgenstrahlung

Weblink

Diese Sammlung an interaktiven Bildschirmexperimenten (IBE) behandelt das Thema der Röntgenstrahlung. Ihr lernt den Aufbau und die Funktionsweise eines Röntgengeräts kennen, untersucht das Modellexperiment der Bragg-Reflexion und könnt zentrale Experimente, wie die Bestimmung der Planckkonstante mit dem Röntgengerät interaktiv durchführen.
Zwischen den Experimenten könnt ihr durch Anklicken der Themen oder mit den Pfeilen unten rechts und links auf der Seite navigieren. Diese Experimente stammen von der AG Didaktik der Physik der Universität Berlin.

Zur Übersicht Zum externen Weblink
Weblink

Diese Sammlung an interaktiven Bildschirmexperimenten (IBE) behandelt das Thema der Röntgenstrahlung. Ihr lernt den Aufbau und die Funktionsweise eines Röntgengeräts kennen, untersucht das Modellexperiment der Bragg-Reflexion und könnt zentrale Experimente, wie die Bestimmung der Planckkonstante mit dem Röntgengerät interaktiv durchführen.
Zwischen den Experimenten könnt ihr durch Anklicken der Themen oder mit den Pfeilen unten rechts und links auf der Seite navigieren. Diese Experimente stammen von der AG Didaktik der Physik der Universität Berlin.

Zur Übersicht Zum externen Weblink

Video zum Linienspektrum von Argon

Weblink

Dieses Video zeigt ein Experiment zur Beobachtung des Linienspektrums einer Argon-Gasentladungslampe. Das Video wurde von der Ecole Science als Open Educational Resource (OER) veröffentlicht.

Zur Übersicht Zum externen Weblink
Weblink

Dieses Video zeigt ein Experiment zur Beobachtung des Linienspektrums einer Argon-Gasentladungslampe. Das Video wurde von der Ecole Science als Open Educational Resource (OER) veröffentlicht.

Zur Übersicht Zum externen Weblink

Video zum Linienspektrum von Kohlenstoffdioxid

Weblink

Dieses Video zeigt ein Experiment zur Beobachtung des Linienspektrums einer Kohlenstoffdioxid-Gasentladungslampe. Das Video wurde von der Ecole Science als Open Educational Resource (OER) veröffentlicht.

Zur Übersicht Zum externen Weblink
Weblink

Dieses Video zeigt ein Experiment zur Beobachtung des Linienspektrums einer Kohlenstoffdioxid-Gasentladungslampe. Das Video wurde von der Ecole Science als Open Educational Resource (OER) veröffentlicht.

Zur Übersicht Zum externen Weblink

Video zum Linienspektrum von Wasserstoff

Weblink

Dieses Video zeigt ein Experiment zur Beobachtung des Linienspektrums einer Wasserstoff-Gasentladungslampe. Das Video wurde von der Ecole Science als Open Educational Resource (OER) veröffentlicht.

Zur Übersicht Zum externen Weblink
Weblink

Dieses Video zeigt ein Experiment zur Beobachtung des Linienspektrums einer Wasserstoff-Gasentladungslampe. Das Video wurde von der Ecole Science als Open Educational Resource (OER) veröffentlicht.

Zur Übersicht Zum externen Weblink

Resonanzabsorption und Resonanzfluoreszenz von Natrium

Versuche

  • Demonstration der Energieaufnahme von Atomen durch Absorption von Photonen (Resonanzabsorption)
  • Demonstration der Energieabgabe von Atomen durch Emission von Photonen (Resonanzfluoreszenz)

Zum Artikel
Versuche

  • Demonstration der Energieaufnahme von Atomen durch Absorption von Photonen (Resonanzabsorption)
  • Demonstration der Energieabgabe von Atomen durch Emission von Photonen (Resonanzfluoreszenz)

Zum Artikel Zu den Aufgaben

Mechanische Analogieversuche zu diskreten Energieniveaus

Versuche

  • Die Versuche sollen das Phänomen der diskreten Energieniveaus durch mechanische Analogien veranschaulichen.

Zum Artikel
Versuche

  • Die Versuche sollen das Phänomen der diskreten Energieniveaus durch mechanische Analogien veranschaulichen.

Zum Artikel Zu den Aufgaben

Emissionsspektren von Haushaltslampen (IBE der FU Berlin/QUA-LiS NRW)

Versuche

  • Vergleich der Emissionspektren verschiedener Haushaltslampen

Zum Artikel
Versuche

  • Vergleich der Emissionspektren verschiedener Haushaltslampen

Zum Artikel Zu den Aufgaben

Emissionsspektren von LEDs (IBE der FU Berlin/QUA-LiS NRW)

Versuche

  • Vergleich der Emissionspektren verschiedener LEDs

Zum Artikel
Versuche

  • Vergleich der Emissionspektren verschiedener LEDs

Zum Artikel Zu den Aufgaben

Emissionsspektren von Bildschirmfarben (IBE der FU Berlin/QUA-LiS NRW)

Versuche

  • Vergleich der Emissionspektren verschiedener Bildschirmfarben

Zum Artikel
Versuche

  • Vergleich der Emissionspektren verschiedener Bildschirmfarben

Zum Artikel Zu den Aufgaben