Direkt zum Inhalt
Suchergebnisse 121 - 150 von 182

Zeigerdiagramme in der Wechselstromtechnik

Grundwissen

  • In der Wechselstromtechnik werden häufig Zeigerdiagramme zur Darstellung von Stromstärke und Spannung genutzt.
  • Dabei dreht sich ein Zeiger, dessen Länge der Amplitude (z.B. \(\hat I\)) entspricht, mit der  Winkelgeschwindigkeit \(\omega\) gegen den Uhrzeigersinn.
  • Der Momentanwert der jeweiligen Größe kann dann im Zeigerdiagramm an der vertikalen Achse abgelesen werden.

Zum Artikel
Grundwissen

  • In der Wechselstromtechnik werden häufig Zeigerdiagramme zur Darstellung von Stromstärke und Spannung genutzt.
  • Dabei dreht sich ein Zeiger, dessen Länge der Amplitude (z.B. \(\hat I\)) entspricht, mit der  Winkelgeschwindigkeit \(\omega\) gegen den Uhrzeigersinn.
  • Der Momentanwert der jeweiligen Größe kann dann im Zeigerdiagramm an der vertikalen Achse abgelesen werden.

Zum Artikel Zu den Aufgaben

Magnetfeld eines geraden Leiters

Grundwissen

  • Das Magnetfeld um einen geraden Leiter verläuft in konzentrischen Kreisen um den Leiter.
  • Richtung und Stärke des Magnetfeldes werden u.a. von Stromstärke und Stromrichtung im Leiter bestimmt.
  • Die Richtung und die Orientierung des Magnetfeldes kannst du mit der Rechten-Faust-Regel ermitteln.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Das Magnetfeld um einen geraden Leiter verläuft in konzentrischen Kreisen um den Leiter.
  • Richtung und Stärke des Magnetfeldes werden u.a. von Stromstärke und Stromrichtung im Leiter bestimmt.
  • Die Richtung und die Orientierung des Magnetfeldes kannst du mit der Rechten-Faust-Regel ermitteln.

Zum Artikel Zu den Aufgaben

Magnetfeld einer Zylinderspule

Grundwissen

  • Das Magnetfeld im Innenraum einer langgestreckten Spule ist annähernd homogen.
  • Für die magnetische Feldstärke (magnetische Flussdichte) in einer luftgefüllten Spule gilt \(B = {\mu _0} \cdot \frac{{I \cdot N}}{l}\).
  • Die magnetische Feldstärke kann mithilfe ferromagnetischer Stoffe im Innenraum um den materialabhängigen Faktor \(\mu_r\) verstärkt werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Das Magnetfeld im Innenraum einer langgestreckten Spule ist annähernd homogen.
  • Für die magnetische Feldstärke (magnetische Flussdichte) in einer luftgefüllten Spule gilt \(B = {\mu _0} \cdot \frac{{I \cdot N}}{l}\).
  • Die magnetische Feldstärke kann mithilfe ferromagnetischer Stoffe im Innenraum um den materialabhängigen Faktor \(\mu_r\) verstärkt werden.

Zum Artikel Zu den Aufgaben

Größen zur Beschreibung von Induktionsvorgängen

Grundwissen

  • Bei unseren Versuchen und Aufgaben zur Induktion ist das magnetische Feld stets homogen und kann durch einen einzigen Feldvektor \(\vec B\) beschrieben werden.
  • Bei unseren Versuchen und Aufgaben zur Induktion ist die Leiterschleife stets eben und kann durch einen einzigen Flächenvektor \(\vec A\) beschrieben werden. \(\vec A\) beschreibt dabei die (Teil-)Fläche der Leiterschleife, die sich im magnetischen Feld befindet.
  • Bei Induktionsvorgängen ist \(\varphi\) die Weite des Winkels zwischen dem Feldvektor \(\vec B\) und dem Flächenvektor \(\vec A\).

Zum Artikel
Grundwissen

  • Bei unseren Versuchen und Aufgaben zur Induktion ist das magnetische Feld stets homogen und kann durch einen einzigen Feldvektor \(\vec B\) beschrieben werden.
  • Bei unseren Versuchen und Aufgaben zur Induktion ist die Leiterschleife stets eben und kann durch einen einzigen Flächenvektor \(\vec A\) beschrieben werden. \(\vec A\) beschreibt dabei die (Teil-)Fläche der Leiterschleife, die sich im magnetischen Feld befindet.
  • Bei Induktionsvorgängen ist \(\varphi\) die Weite des Winkels zwischen dem Feldvektor \(\vec B\) und dem Flächenvektor \(\vec A\).

Zum Artikel Zu den Aufgaben

Elektromagnetischer Schwingkreis gedämpft

Grundwissen

  • Der Widerstand der Bauteile in einem Schwingkreis führt zur Dämpfung der Schwingung.
  • Die Differentialgleichung der gedämpften elektromagnetischen Schwingung ist \(L \cdot \ddot Q + \frac{Q}{C} + R \cdot \dot Q = 0\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Der Widerstand der Bauteile in einem Schwingkreis führt zur Dämpfung der Schwingung.
  • Die Differentialgleichung der gedämpften elektromagnetischen Schwingung ist \(L \cdot \ddot Q + \frac{Q}{C} + R \cdot \dot Q = 0\).

Zum Artikel Zu den Aufgaben

Kraft zwischen elektrischen Ladungen

Grundwissen

  • Gleichnamige Ladungen stoßen sich ab, ungleichnamige Ladungen ziehen sich an.
  • Der Betrag der (anziehenden oder abstoßenden) Kraft wächst mit der "Größe" der Ladungen.
  • Der Betrag der (anziehenden oder abstoßenden) Kraft sinkt mit der Vergrößerung des Abstands zwischen den Ladungen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Gleichnamige Ladungen stoßen sich ab, ungleichnamige Ladungen ziehen sich an.
  • Der Betrag der (anziehenden oder abstoßenden) Kraft wächst mit der "Größe" der Ladungen.
  • Der Betrag der (anziehenden oder abstoßenden) Kraft sinkt mit der Vergrößerung des Abstands zwischen den Ladungen.

Zum Artikel Zu den Aufgaben

WHEATSTONEsche Brückenschaltung (Simulation)

Versuche
Versuche

Spannungsteiler unbelastet (Versuch mit Simulation)

Versuche

  • Demonstration des prinzipiellen Aufbaus und der Funktionsweise eines unbelasteten Spannungsteilers

Zum Artikel Zu den Aufgaben
Versuche

  • Demonstration des prinzipiellen Aufbaus und der Funktionsweise eines unbelasteten Spannungsteilers

Zum Artikel Zu den Aufgaben

Stromkreiselemente

Grundwissen

  • Damit eine Lampe leuchtet, muss immer ein geschlossener Stromkreis vorliegen.
  • Kabel dienen als Verlängerungen und ermöglichen einen einfachen Aufbau.
  • Mit Schaltern kann der Stromkreis geöffnet und geschlossen werden.
  • Sicherungen schützen die Bauteile im Stromkreis vor zu großen Strömen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Damit eine Lampe leuchtet, muss immer ein geschlossener Stromkreis vorliegen.
  • Kabel dienen als Verlängerungen und ermöglichen einen einfachen Aufbau.
  • Mit Schaltern kann der Stromkreis geöffnet und geschlossen werden.
  • Sicherungen schützen die Bauteile im Stromkreis vor zu großen Strömen.

Zum Artikel Zu den Aufgaben

Spannungsteiler belastet (Versuch mit Simulation)

Versuche

  • Demonstration des prinzipiellen Aufbaus und der Funktionsweise eines belasteten Spannungsteilers
  • Demonstration verschiedener Möglichkeiten, den Spannungsteiler so zu verändern, dass der Betrieb der Last gewährleistet ist.

Zum Artikel Zu den Aufgaben
Versuche

  • Demonstration des prinzipiellen Aufbaus und der Funktionsweise eines belasteten Spannungsteilers
  • Demonstration verschiedener Möglichkeiten, den Spannungsteiler so zu verändern, dass der Betrieb der Last gewährleistet ist.

Zum Artikel Zu den Aufgaben

Potentiometerschaltung belastet (Simulation)

Versuche
Versuche

MILLIKAN-Versuch - Schwebemethode (Simulation)

Versuche

Mit Hilfe dieser Simulation kannst du dir selbstständig die Ergebnisse des MILLIKAN-Versuchs erarbeiten.

Zum Artikel Zu den Aufgaben
Versuche

Mit Hilfe dieser Simulation kannst du dir selbstständig die Ergebnisse des MILLIKAN-Versuchs erarbeiten.

Zum Artikel Zu den Aufgaben

MILLIKAN-Versuch - Schwebe-Fall-Methode (Simulation)

Versuche

Mit Hilfe dieser Simulation kannst du dir selbstständig die Ergebnisse des MILLIKAN-Versuchs erarbeiten.

Zum Artikel Zu den Aufgaben
Versuche

Mit Hilfe dieser Simulation kannst du dir selbstständig die Ergebnisse des MILLIKAN-Versuchs erarbeiten.

Zum Artikel Zu den Aufgaben

MILLIKAN-Versuch - Steige-Fall-Methode (Simulation)

Versuche

Mit Hilfe dieser Simulation kannst du dir selbstständig die Ergebnisse des MILLIKAN-Versuchs erarbeiten.

Zum Artikel Zu den Aufgaben
Versuche

Mit Hilfe dieser Simulation kannst du dir selbstständig die Ergebnisse des MILLIKAN-Versuchs erarbeiten.

Zum Artikel Zu den Aufgaben

MILLIKAN-Versuch - Steige-Sink-Methode (Simulation)

Versuche

Mit Hilfe dieser Simulation kannst du dir selbstständig die Ergebnisse des MILLIKAN-Versuchs erarbeiten.

Zum Artikel Zu den Aufgaben
Versuche

Mit Hilfe dieser Simulation kannst du dir selbstständig die Ergebnisse des MILLIKAN-Versuchs erarbeiten.

Zum Artikel Zu den Aufgaben

Innenwiderstand

Versuche

  • Innenwiderstandes einer Quelle thematisieren
  • Innenwiderstand experimentell ermitteln

Zum Artikel
Versuche

  • Innenwiderstandes einer Quelle thematisieren
  • Innenwiderstand experimentell ermitteln

Zum Artikel Zu den Aufgaben

Regel von LENZ

Versuche

  • Versuche zum Entwickeln der LENZschen Regel
  • Bestätigung der LENZschen Regel

Zum Artikel
Versuche

  • Versuche zum Entwickeln der LENZschen Regel
  • Bestätigung der LENZschen Regel

Zum Artikel Zu den Aufgaben

Elektromotor

Versuche

  • Notwendigkeit, Funktion und Wirkung eines Kommutators zeigen.
  • Möglichen Aufbau eines funktionierenden Gleichstrom-Elektromotors erläutern.
  • Problem des Totpunktes thematisieren.

Zum Artikel
Versuche

  • Notwendigkeit, Funktion und Wirkung eines Kommutators zeigen.
  • Möglichen Aufbau eines funktionierenden Gleichstrom-Elektromotors erläutern.
  • Problem des Totpunktes thematisieren.

Zum Artikel Zu den Aufgaben

Magnetischen Kraft und Definition der magnetischen Flussdichte mit der Stromwaage

Versuche

  • Erarbeitung der Formel für die magnetische Kraft auf einen stromdurchflossenen Leiter
  • Definition der magnetischen Flussdichte \(B\)

Zum Artikel
Versuche

  • Erarbeitung der Formel für die magnetische Kraft auf einen stromdurchflossenen Leiter
  • Definition der magnetischen Flussdichte \(B\)

Zum Artikel Zu den Aufgaben