Direkt zum Inhalt
Suchergebnisse 31 - 60 von 801

I-U-Kennlinien

Ausblick

  • Kennlinien von Leitern können auch als \(I\)-\(U\)-Kennlinie dargestellt werden.
  • Hier entspricht die Steigung des Graphen gerade dem Widerstand \(R\).
  • Bei einem OHMschen Widerstand ist der Proportionalitätsfaktor des \(I\)-\(U\)-Diagramms gerade sein Widerstand \(R\).

Zum Artikel
Ausblick

  • Kennlinien von Leitern können auch als \(I\)-\(U\)-Kennlinie dargestellt werden.
  • Hier entspricht die Steigung des Graphen gerade dem Widerstand \(R\).
  • Bei einem OHMschen Widerstand ist der Proportionalitätsfaktor des \(I\)-\(U\)-Diagramms gerade sein Widerstand \(R\).

Zum Artikel Zu den Aufgaben

Eigenschaften elektrischer Bauelemente/Wiederholung (Interaktives Tafelbild)

Download ( Tafelbilder )

Das Tafelbild kann zur Wiederholung verschiedener Themen im Bereich Elektrizitätslehre verwendet werden. Es finden sich Flipcharts sowohl zu den…

Zum Download
Download ( Tafelbilder )

Das Tafelbild kann zur Wiederholung verschiedener Themen im Bereich Elektrizitätslehre verwendet werden. Es finden sich Flipcharts sowohl zu den…

Zum Download

Widerstandsgesetz (Interaktives Tafelbild)

Download ( Tafelbilder )

Das Tafelbild kann für ein besseres Verständnis im Bereich des „elektrischen Widerstands eines elektrischen Leiters“ eingesetzt…

Zum Download
Download ( Tafelbilder )

Das Tafelbild kann für ein besseres Verständnis im Bereich des „elektrischen Widerstands eines elektrischen Leiters“ eingesetzt…

Zum Download

Elektrische Kraft (Simulation)

Download ( Simulation )

Die Simulation zeigt die elektrische Ladung von Körpern als Ursache für die elektrische Kraft.

Zum Download
Download ( Simulation )

Die Simulation zeigt die elektrische Ladung von Körpern als Ursache für die elektrische Kraft.

Zum Download

Elektrische Ladung und die Einheit Coulomb - Ladungsmessung (Simulation)

Download ( Simulation )

Die Simulation zeigt das Prinzip der Ladungsmessung über den zeitlichen Verlauf der Stromstärke beim Entladen.

Zum Download
Download ( Simulation )

Die Simulation zeigt das Prinzip der Ladungsmessung über den zeitlichen Verlauf der Stromstärke beim Entladen.

Zum Download

Energieaufnahme durch Stoßanregung - Prinzip (Animation)

Download ( Simulation )

Die Animation zeigt das Prinzip der Energieaufnahme eines Atoms am Beispiel eines unelastischen Stoßes des Atoms mit einem Elektron (Stoßanregung).

Zum Download
Download ( Simulation )

Die Animation zeigt das Prinzip der Energieaufnahme eines Atoms am Beispiel eines unelastischen Stoßes des Atoms mit einem Elektron (Stoßanregung).

Zum Download

Energieaufnahme durch Stoßanregung - Varianten (Animation)

Download ( Simulation )

Die Animation zeigt verschiedene Arten von Stößen eines Atoms mit einem Elektron in Abhängigkeit von der kinetischen Energie des Elektrons.

Zum Download
Download ( Simulation )

Die Animation zeigt verschiedene Arten von Stößen eines Atoms mit einem Elektron in Abhängigkeit von der kinetischen Energie des Elektrons.

Zum Download

Energieaufnahme durch Absorption - Prinzip (Animation)

Download ( Simulation )

Die Animation zeigt das Prinzip der Energieaufnahme (Anregung) eines Atoms durch die Absorption eines Photons.

Zum Download
Download ( Simulation )

Die Animation zeigt das Prinzip der Energieaufnahme (Anregung) eines Atoms durch die Absorption eines Photons.

Zum Download

Energieaufnahme durch Absorption - Varianten (Animation)

Download ( Simulation )

Die Animation zeigt verschiedene Arten des Aufeinandertreffens eines Atoms mit einem Photon in Abhängigkeit von der Energie des Photons.

Zum Download
Download ( Simulation )

Die Animation zeigt verschiedene Arten des Aufeinandertreffens eines Atoms mit einem Photon in Abhängigkeit von der Energie des Photons.

Zum Download

Energieabgabe durch Emission - Prinzip (Animation)

Download ( Simulation )

Die Animation zeigt das Prinzip der Energieabgabe eines Atoms durch die Emission eines Photons.

Zum Download
Download ( Simulation )

Die Animation zeigt das Prinzip der Energieabgabe eines Atoms durch die Emission eines Photons.

Zum Download

Energieabgabe durch Emission - Varianten (Animation)

Download ( Simulation )

Die Animation zeigt verschiedene Möglichkeiten der Energieabgabe eines Atoms durch Emission eines oder mehrerer Photonen.

Zum Download
Download ( Simulation )

Die Animation zeigt verschiedene Möglichkeiten der Energieabgabe eines Atoms durch Emission eines oder mehrerer Photonen.

Zum Download

Spektren - Emissionsspektren (Animation)

Download ( Simulation )

Die Animation zeigt die Emissionsspektren verschiedener Elemente und einer Kohlebogenlampe. This work by Andrew Duffy is licensed under a Creative…

Zum Download
Download ( Simulation )

Die Animation zeigt die Emissionsspektren verschiedener Elemente und einer Kohlebogenlampe. This work by Andrew Duffy is licensed under a Creative…

Zum Download

Spektren - Absorptionsspektren (Animation)

Download ( Simulation )

Die Animation zeigt die Absorptionsspektren verschiedener Elemente. This work by Andrew Duffy is licensed under a Creative Commons…

Zum Download
Download ( Simulation )

Die Animation zeigt die Absorptionsspektren verschiedener Elemente. This work by Andrew Duffy is licensed under a Creative Commons…

Zum Download

Energiezustände von Atomen - Festlegung des Nullniveaus (Standbild)

Download ( Simulation )

Die Abbildung zeigt die Festlegung des Nullniveaus der Energieachse durch die Energie des einfach ionisierten Atoms.

Zum Download
Download ( Simulation )

Die Abbildung zeigt die Festlegung des Nullniveaus der Energieachse durch die Energie des einfach ionisierten Atoms.

Zum Download

Energiezustände von Atomen - Energieachse (Standbild)

Download ( Simulation )

Die Abbildung zeigt die abstrakte Darstellung eines Atoms als Kugel mit einer vertikal orientierten Energieachse.

Zum Download
Download ( Simulation )

Die Abbildung zeigt die abstrakte Darstellung eines Atoms als Kugel mit einer vertikal orientierten Energieachse.

Zum Download

Energiezustände von Atomen - Lage des Grundzustands (Standbild)

Download ( Simulation )

Die Abildung zeigt die Lage der Energie des Grundzustands auf der Energieachse eines Atoms.

Zum Download
Download ( Simulation )

Die Abildung zeigt die Lage der Energie des Grundzustands auf der Energieachse eines Atoms.

Zum Download

Energiezustände von Atomen - Termschema (Animation)

Download ( Simulation )

Die Animation zeigt das Termschema eines Atoms in einer abstrakten Darstellung des Atoms.

Zum Download
Download ( Simulation )

Die Animation zeigt das Termschema eines Atoms in einer abstrakten Darstellung des Atoms.

Zum Download

Magnetische Flussdichte in der Umgebung eines geraden Leiters - Formelumstellung (Animation)

Download ( Simulation )

Die Animation zeigt das schrittweise Auflösen der Formel zur Berechnung der magnetischen Flussdichte in der Umgebung eines geraden Leiters nach den…

Zum Download
Download ( Simulation )

Die Animation zeigt das schrittweise Auflösen der Formel zur Berechnung der magnetischen Flussdichte in der Umgebung eines geraden Leiters nach den…

Zum Download

Magnetische Flussdichte in der Mittelebene von HELMHOLTZ-Spulen - Formelumstellung (Animation)

Download ( Simulation )

Die Animation zeigt das schrittweise Auflösen der Formel zur Berechnung der magnetischen Flussdichte in der Mittelebene von HELMHOLTZ-Spulen nach den…

Zum Download
Download ( Simulation )

Die Animation zeigt das schrittweise Auflösen der Formel zur Berechnung der magnetischen Flussdichte in der Mittelebene von HELMHOLTZ-Spulen nach den…

Zum Download

Linearbeschleuniger (Simulation MintApps)

Download ( Simulation )

Wir danken Herrn Thomas Kippenberg für die Erlaubnis, diese Simulation auf LEIFIphysik zu nutzen. Der Code steht unter GNU GPLv3 /…

Zum Download
Download ( Simulation )

Wir danken Herrn Thomas Kippenberg für die Erlaubnis, diese Simulation auf LEIFIphysik zu nutzen. Der Code steht unter GNU GPLv3 /…

Zum Download

Schaltertypen - Taster (Animation)

Download ( Simulation )

Die Animation zeigt das Schaltzeichen und die Funktionsweise eines Tasters.

Zum Download
Download ( Simulation )

Die Animation zeigt das Schaltzeichen und die Funktionsweise eines Tasters.

Zum Download

Induktion durch Änderung der magnetischen Flussdichte - Formelumstellung (Animation)

Download ( Simulation )

Die Animation zeigt das schrittweise Auflösen der Formel zur Berechnung der Induktionsspannung bei Änderung der magnetischen Flussdichte nach den fünf…

Zum Download
Download ( Simulation )

Die Animation zeigt das schrittweise Auflösen der Formel zur Berechnung der Induktionsspannung bei Änderung der magnetischen Flussdichte nach den fünf…

Zum Download

Induktion durch Änderung des Flächeninhalts - Formelumstellung (Animation)

Download ( Simulation )

Die Animation zeigt das schrittweise Auflösen der Formel zur Berechnung der Induktionsspannung bei Änderung des Flächeninhalts nach den fünf in der…

Zum Download
Download ( Simulation )

Die Animation zeigt das schrittweise Auflösen der Formel zur Berechnung der Induktionsspannung bei Änderung des Flächeninhalts nach den fünf in der…

Zum Download

Mein Sonnensystem (Simulation von PhET)

Download ( Simulation )

Simulation by PhET Interactive Simulations, University of Colorado Boulder, licensed under CC-BY-4.0 (https://phet.colorado.edu).

Zum Download
Download ( Simulation )

Simulation by PhET Interactive Simulations, University of Colorado Boulder, licensed under CC-BY-4.0 (https://phet.colorado.edu).

Zum Download

Elektromagnetischer Schwingkreis stark gedämpft - aperiodischer Grenzfall (Theorie)

Ausblick

  • Im Fall \({\omega_0}^2 = \delta^2\) ist die Schwingung stark gedämpft. Wir sprechen dann vom sogenannten aperiodische Grenzfall.
  • Die Differentialgleichung \((*)\) für die Ladung \(Q(t)\) auf der oberen Platte des Kondensators wird dann gelöst durch die Funktion \(Q(t) = \hat{Q} \cdot \left( {1 + \delta \cdot t} \right) \cdot {e^{ - \delta \cdot t}}\) mit \(\hat{Q}=Q_0\) und \(\delta = \frac{R}{2 \cdot L}\)

Zum Artikel
Ausblick

  • Im Fall \({\omega_0}^2 = \delta^2\) ist die Schwingung stark gedämpft. Wir sprechen dann vom sogenannten aperiodische Grenzfall.
  • Die Differentialgleichung \((*)\) für die Ladung \(Q(t)\) auf der oberen Platte des Kondensators wird dann gelöst durch die Funktion \(Q(t) = \hat{Q} \cdot \left( {1 + \delta \cdot t} \right) \cdot {e^{ - \delta \cdot t}}\) mit \(\hat{Q}=Q_0\) und \(\delta = \frac{R}{2 \cdot L}\)

Zum Artikel Zu den Aufgaben

Elektromagnetischer Schwingkreis stark gedämpft - Kriechfall (Theorie)

Ausblick

  • Im Fall \({\omega_0}^2 < \delta^2\) ist die Schwingung stark gedämpft. Wir sprechen dann vom sogenannten Kriechfall.
  • Die Differentialgleichung \((*)\) für die Ladung \(Q(t)\) auf der oberen Platte des Kondensators wird dann gelöst durch die Funktion \(Q(t) = \hat{Q} \cdot \frac{1}{{2 \cdot \lambda }}\left( {\left( {\lambda + \delta } \right) \cdot {e^{\lambda \cdot t}} + \left( {\lambda - \delta } \right) \cdot {e^{ - \lambda \cdot t}}} \right) \cdot {e^{ - \delta \cdot t}}\) mit \(\hat{Q}=Q_0\), \(\lambda = \sqrt {{\delta ^2} - {\omega_0}^2}\), \(\omega_0=\sqrt{\frac{1}{L \cdot C}}\) und \(\delta = \frac{R}{2 \cdot L}\)

Zum Artikel
Ausblick

  • Im Fall \({\omega_0}^2 < \delta^2\) ist die Schwingung stark gedämpft. Wir sprechen dann vom sogenannten Kriechfall.
  • Die Differentialgleichung \((*)\) für die Ladung \(Q(t)\) auf der oberen Platte des Kondensators wird dann gelöst durch die Funktion \(Q(t) = \hat{Q} \cdot \frac{1}{{2 \cdot \lambda }}\left( {\left( {\lambda + \delta } \right) \cdot {e^{\lambda \cdot t}} + \left( {\lambda - \delta } \right) \cdot {e^{ - \lambda \cdot t}}} \right) \cdot {e^{ - \delta \cdot t}}\) mit \(\hat{Q}=Q_0\), \(\lambda = \sqrt {{\delta ^2} - {\omega_0}^2}\), \(\omega_0=\sqrt{\frac{1}{L \cdot C}}\) und \(\delta = \frac{R}{2 \cdot L}\)

Zum Artikel Zu den Aufgaben

Elektromagnetischer Schwingkreis ungedämpft (Modellbildung)

Ausblick

  • Auf Basis einer geeigneten Modellierung lässt sich der ungedämpfte elektromagnetische Schwingkreis mit Hilfe der Methode der kleinen Schritte simulieren.

Zum Artikel
Ausblick

  • Auf Basis einer geeigneten Modellierung lässt sich der ungedämpfte elektromagnetische Schwingkreis mit Hilfe der Methode der kleinen Schritte simulieren.

Zum Artikel Zu den Aufgaben

Elektromagnetischer Schwingkreis gedämpft (Modellbildung)

Ausblick

  • Auf Basis einer geeigneten Modellierung lässt sich der gedämpfte elektromagnetische Schwingkreis mit Hilfe der Methode der kleinen Schritte simulieren.

Zum Artikel
Ausblick

  • Auf Basis einer geeigneten Modellierung lässt sich der gedämpfte elektromagnetische Schwingkreis mit Hilfe der Methode der kleinen Schritte simulieren.

Zum Artikel Zu den Aufgaben

Aufladen eines Kondensators (Modellbildung)

Ausblick

  • Auf Basis einer geeigneten Modellierung lässt sich das Aufladen eines Kondensators mit Hilfe der Methode der kleinen Schritte simulieren.

Zum Artikel
Ausblick

  • Auf Basis einer geeigneten Modellierung lässt sich das Aufladen eines Kondensators mit Hilfe der Methode der kleinen Schritte simulieren.

Zum Artikel Zu den Aufgaben

Entladen eines Kondensators (Modellbildung)

Ausblick

  • Auf Basis einer geeigneten Modellierung lässt sich das Entladen eines Kondensators mit Hilfe der Methode der kleinen Schritte simulieren.

Zum Artikel
Ausblick

  • Auf Basis einer geeigneten Modellierung lässt sich das Entladen eines Kondensators mit Hilfe der Methode der kleinen Schritte simulieren.

Zum Artikel Zu den Aufgaben