Direkt zum Inhalt
Suchergebnisse 31 - 52 von 52

DOPPLER-Effekt

Grundwissen

  • Der Doppler-Effekt ist die zeitliche Stauchung bzw. Dehnung einer Welle durch die Veränderungen des Abstands zwischen Sender und Empfänger.
  • Man unterscheidet häufig, ob sich der Sender oder der Empfänger bewegt. Der andere ist zur Vereinfachung in Ruhe.
  • Verkleinert sich der Abstand Sender-Empfänger so steigt die wahrgenommene Frequenz.
  • Vergrößert sich der Abstand so sinkt die wahrgenommene Frequenz,

Zum Artikel Zu den Aufgaben
Grundwissen

  • Der Doppler-Effekt ist die zeitliche Stauchung bzw. Dehnung einer Welle durch die Veränderungen des Abstands zwischen Sender und Empfänger.
  • Man unterscheidet häufig, ob sich der Sender oder der Empfänger bewegt. Der andere ist zur Vereinfachung in Ruhe.
  • Verkleinert sich der Abstand Sender-Empfänger so steigt die wahrgenommene Frequenz.
  • Vergrößert sich der Abstand so sinkt die wahrgenommene Frequenz,

Zum Artikel Zu den Aufgaben

Entwicklung der Sonne

Grundwissen

  • Aktuell befindet sich die Sonne im Hauptreihenstadium und ist ein Gelber Zwerg.
  • Durch die Ständige Kernfusion im Inneren wandert die Sonne entlang der Hauptreihe im Hertzsprung-Russel-Diagramm.
  • In etwa 6 Milliarden Jahren wird die Sonne dann zu einem Roten Riesen bis sie schließlich als Weißer Zwerg endet.

Zum Artikel
Grundwissen

  • Aktuell befindet sich die Sonne im Hauptreihenstadium und ist ein Gelber Zwerg.
  • Durch die Ständige Kernfusion im Inneren wandert die Sonne entlang der Hauptreihe im Hertzsprung-Russel-Diagramm.
  • In etwa 6 Milliarden Jahren wird die Sonne dann zu einem Roten Riesen bis sie schließlich als Weißer Zwerg endet.

Zum Artikel Zu den Aufgaben

Ausdehnung des Kosmos

Grundwissen

  • Das Universum als Ganzes dehnt sich gegenwärtig aus.
  • Dabei besteht ein Zusammenhang zwischen der Entfernung der Galaxien voneinander und ihrer "Fluchtgeschwindigkeit" voneinander.
  • Bei der Ausdehnung gibt es keinen ausgezeichneten Punkt, keinen Mittelpunkt.

Zum Artikel
Grundwissen

  • Das Universum als Ganzes dehnt sich gegenwärtig aus.
  • Dabei besteht ein Zusammenhang zwischen der Entfernung der Galaxien voneinander und ihrer "Fluchtgeschwindigkeit" voneinander.
  • Bei der Ausdehnung gibt es keinen ausgezeichneten Punkt, keinen Mittelpunkt.

Zum Artikel Zu den Aufgaben

Kraft auf stromführende Leiter im Magnetfeld

Grundwissen

  • Auf stromdurchflossene Leiter im Magnetfeld wirkt im Allgemeinen eine Kraft.
  • Die Kraftrichtung kannst du mit der Drei-Finger-Regel der rechten Hand bestimmen.
  • Wenn Stromrichtung und Magnetfeldrichtung parallel bzw. antiparallel verlaufen, wirkt keine Kraft.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Auf stromdurchflossene Leiter im Magnetfeld wirkt im Allgemeinen eine Kraft.
  • Die Kraftrichtung kannst du mit der Drei-Finger-Regel der rechten Hand bestimmen.
  • Wenn Stromrichtung und Magnetfeldrichtung parallel bzw. antiparallel verlaufen, wirkt keine Kraft.

Zum Artikel Zu den Aufgaben

Schallwellen

Grundwissen

In idealen Flüssigkeiten und Gasen breitet sich Schall nur in Form von Längswellen (Longitudinalwellen) aus. Störungen werden über die Stöße der Teilchen weitergegeben.

In Festkörpern kann sich Schall in Form von Längswellen (Longitudinalwellen) und Querwellen (Transversalwellen) ausbreiten. Störungen werden über die Kopplungskräfte der Teilchen weitergegeben.

Zum Artikel
Grundwissen

In idealen Flüssigkeiten und Gasen breitet sich Schall nur in Form von Längswellen (Longitudinalwellen) aus. Störungen werden über die Stöße der Teilchen weitergegeben.

In Festkörpern kann sich Schall in Form von Längswellen (Longitudinalwellen) und Querwellen (Transversalwellen) ausbreiten. Störungen werden über die Kopplungskräfte der Teilchen weitergegeben.

Zum Artikel Zu den Aufgaben

Wechselstromwiderstände

Grundwissen

  • Der Wechselstromwiderstand eines Elementes ist der Quotient aus Effektivspannung und Effektivstromstärke: \(X=\frac{U_{\rm{eff}}}{I_{\rm{eff}}}\)
  • Man unterscheidet zwischen Wechselstromwiderständen von OHMschen Leitern \(X_R\), an kapazitiven Bauelementen (Kondensatoren) \(X_C\) und an induktiven Bauelementen (Spulen) \(X_L\).
  • Zusätzlich verursachen Kondensatoren und Spulen Phasenverschiebungen der über dem Bauelement abfallenden Spannung gegenüber der Stromstärke1.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Der Wechselstromwiderstand eines Elementes ist der Quotient aus Effektivspannung und Effektivstromstärke: \(X=\frac{U_{\rm{eff}}}{I_{\rm{eff}}}\)
  • Man unterscheidet zwischen Wechselstromwiderständen von OHMschen Leitern \(X_R\), an kapazitiven Bauelementen (Kondensatoren) \(X_C\) und an induktiven Bauelementen (Spulen) \(X_L\).
  • Zusätzlich verursachen Kondensatoren und Spulen Phasenverschiebungen der über dem Bauelement abfallenden Spannung gegenüber der Stromstärke1.

Zum Artikel Zu den Aufgaben

Zeigerdiagramme in der Wechselstromtechnik

Grundwissen

  • In der Wechselstromtechnik werden häufig Zeigerdiagramme zur Darstellung von Stromstärke und Spannung genutzt.
  • Dabei dreht sich ein Zeiger, dessen Länge der Amplitude (z.B. \(\hat I\)) entspricht, mit der  Winkelgeschwindigkeit \(\omega\) gegen den Uhrzeigersinn.
  • Der Momentanwert der jeweiligen Größe kann dann im Zeigerdiagramm an der vertikalen Achse abgelesen werden.

Zum Artikel
Grundwissen

  • In der Wechselstromtechnik werden häufig Zeigerdiagramme zur Darstellung von Stromstärke und Spannung genutzt.
  • Dabei dreht sich ein Zeiger, dessen Länge der Amplitude (z.B. \(\hat I\)) entspricht, mit der  Winkelgeschwindigkeit \(\omega\) gegen den Uhrzeigersinn.
  • Der Momentanwert der jeweiligen Größe kann dann im Zeigerdiagramm an der vertikalen Achse abgelesen werden.

Zum Artikel Zu den Aufgaben

Was ist Bionik?

Grundwissen
Grundwissen

Der Lotuseffekt - selbstreinigende Oberfläche

Grundwissen
Grundwissen

Auftrieb

Grundwissen
Grundwissen

Flugfrüchte

Grundwissen
Grundwissen

Leichtbauweise

Grundwissen
Grundwissen

Magnetfeld einer Zylinderspule

Grundwissen

  • Das Magnetfeld im Innenraum einer langgestreckten Spule ist annähernd homogen.
  • Für die magnetische Feldstärke (magnetische Flussdichte) in einer luftgefüllten Spule gilt \(B = {\mu _0} \cdot \frac{{I \cdot N}}{l}\).
  • Die magnetische Feldstärke kann mithilfe ferromagnetischer Stoffe im Innenraum um den materialabhängigen Faktor \(\mu_r\) verstärkt werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Das Magnetfeld im Innenraum einer langgestreckten Spule ist annähernd homogen.
  • Für die magnetische Feldstärke (magnetische Flussdichte) in einer luftgefüllten Spule gilt \(B = {\mu _0} \cdot \frac{{I \cdot N}}{l}\).
  • Die magnetische Feldstärke kann mithilfe ferromagnetischer Stoffe im Innenraum um den materialabhängigen Faktor \(\mu_r\) verstärkt werden.

Zum Artikel Zu den Aufgaben

Geometrie der Ellipse

Grundwissen

  • Planetenbahnen können nach KEPLER sehr gut als Ellipsen beschrieben werden.
  • Ellipsen haben zwei Brennpunkte.
  • Wichtige Begriffe sind die große Halbachse \(a\), die kleine Halbachse \(b\) und die Exzentrizität \(\varepsilon\).

Zum Artikel
Grundwissen

  • Planetenbahnen können nach KEPLER sehr gut als Ellipsen beschrieben werden.
  • Ellipsen haben zwei Brennpunkte.
  • Wichtige Begriffe sind die große Halbachse \(a\), die kleine Halbachse \(b\) und die Exzentrizität \(\varepsilon\).

Zum Artikel Zu den Aufgaben

Größen zur Beschreibung von Induktionsvorgängen

Grundwissen

  • Bei unseren Versuchen und Aufgaben zur Induktion ist das magnetische Feld stets homogen und kann durch einen einzigen Feldvektor \(\vec B\) beschrieben werden.
  • Bei unseren Versuchen und Aufgaben zur Induktion ist die Leiterschleife stets eben und kann durch einen einzigen Flächenvektor \(\vec A\) beschrieben werden. \(\vec A\) beschreibt dabei die (Teil-)Fläche der Leiterschleife, die sich im magnetischen Feld befindet.
  • Bei Induktionsvorgängen ist \(\varphi\) die Weite des Winkels zwischen dem Feldvektor \(\vec B\) und dem Flächenvektor \(\vec A\).

Zum Artikel
Grundwissen

  • Bei unseren Versuchen und Aufgaben zur Induktion ist das magnetische Feld stets homogen und kann durch einen einzigen Feldvektor \(\vec B\) beschrieben werden.
  • Bei unseren Versuchen und Aufgaben zur Induktion ist die Leiterschleife stets eben und kann durch einen einzigen Flächenvektor \(\vec A\) beschrieben werden. \(\vec A\) beschreibt dabei die (Teil-)Fläche der Leiterschleife, die sich im magnetischen Feld befindet.
  • Bei Induktionsvorgängen ist \(\varphi\) die Weite des Winkels zwischen dem Feldvektor \(\vec B\) und dem Flächenvektor \(\vec A\).

Zum Artikel Zu den Aufgaben

Elektromagnetischer Schwingkreis gedämpft

Grundwissen

  • Der Widerstand der Bauteile in einem Schwingkreis führt zur Dämpfung der Schwingung.
  • Die Differentialgleichung der gedämpften elektromagnetischen Schwingung ist \(L \cdot \ddot Q + \frac{Q}{C} + R \cdot \dot Q = 0\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Der Widerstand der Bauteile in einem Schwingkreis führt zur Dämpfung der Schwingung.
  • Die Differentialgleichung der gedämpften elektromagnetischen Schwingung ist \(L \cdot \ddot Q + \frac{Q}{C} + R \cdot \dot Q = 0\).

Zum Artikel Zu den Aufgaben

Gangunterschied bei zwei Quellen

Grundwissen

  • Allgemein gilt für den Gangunterschied \(\Delta s = \left| {\overline {{S_2}E} - \overline {{S_1}E} } \right|\)
  • Im Falle eines rechtwinkligen Aufbaus hilft der Satz des Pythagoras
  • Bei weit entferntem Empfänger kann die Kleinwinkelnäherung genutzt werden und \(\Delta s = d \cdot \frac{a}{e}\)

Zum Artikel
Grundwissen

  • Allgemein gilt für den Gangunterschied \(\Delta s = \left| {\overline {{S_2}E} - \overline {{S_1}E} } \right|\)
  • Im Falle eines rechtwinkligen Aufbaus hilft der Satz des Pythagoras
  • Bei weit entferntem Empfänger kann die Kleinwinkelnäherung genutzt werden und \(\Delta s = d \cdot \frac{a}{e}\)

Zum Artikel Zu den Aufgaben

Kraft zwischen elektrischen Ladungen

Grundwissen

  • Gleichnamige Ladungen stoßen sich ab, ungleichnamige Ladungen ziehen sich an.
  • Der Betrag der (anziehenden oder abstoßenden) Kraft wächst mit der "Größe" der Ladungen.
  • Der Betrag der (anziehenden oder abstoßenden) Kraft sinkt mit der Vergrößerung des Abstands zwischen den Ladungen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Gleichnamige Ladungen stoßen sich ab, ungleichnamige Ladungen ziehen sich an.
  • Der Betrag der (anziehenden oder abstoßenden) Kraft wächst mit der "Größe" der Ladungen.
  • Der Betrag der (anziehenden oder abstoßenden) Kraft sinkt mit der Vergrößerung des Abstands zwischen den Ladungen.

Zum Artikel Zu den Aufgaben

Stromkreiselemente

Grundwissen

  • Damit eine Lampe leuchtet, muss immer ein geschlossener Stromkreis vorliegen.
  • Kabel dienen als Verlängerungen und ermöglichen einen einfachen Aufbau.
  • Mit Schaltern kann der Stromkreis geöffnet und geschlossen werden.
  • Sicherungen schützen die Bauteile im Stromkreis vor zu großen Strömen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Damit eine Lampe leuchtet, muss immer ein geschlossener Stromkreis vorliegen.
  • Kabel dienen als Verlängerungen und ermöglichen einen einfachen Aufbau.
  • Mit Schaltern kann der Stromkreis geöffnet und geschlossen werden.
  • Sicherungen schützen die Bauteile im Stromkreis vor zu großen Strömen.

Zum Artikel Zu den Aufgaben

Parallelschaltung von Widerständen

Grundwissen

  • Für den Gesamtwiderstand \(R_{12}\) zweier parallel geschalteter Widerstände \(R_1\) und \(R_2\) gilt: \(\frac{1}{R_{12}}=\frac{1}{R_1} +\frac{1}{R_2}\)
  •  Der Gesamtwiderstands einer Parallelschaltung ist stets kleiner als der kleinste Einzelwiderstand eines Astes.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Für den Gesamtwiderstand \(R_{12}\) zweier parallel geschalteter Widerstände \(R_1\) und \(R_2\) gilt: \(\frac{1}{R_{12}}=\frac{1}{R_1} +\frac{1}{R_2}\)
  •  Der Gesamtwiderstands einer Parallelschaltung ist stets kleiner als der kleinste Einzelwiderstand eines Astes.

Zum Artikel Zu den Aufgaben

Leiter und Nichtleiter

Grundwissen

  • Materialien können grob in zwei Kategorien eingeteilt werden: Leiter (z.B. Metalle) und Nichtleiter (z.B. Kunststoffe).
  • Ob ein Material Strom gut oder schlecht leitet kannst du mit einer Testschaltung prüfen.
  • Je mehr Salz im Wasser gelöst ist, desto besser leitet Wasser Strom.
  • Die meisten Gase leiten Strom nicht.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Materialien können grob in zwei Kategorien eingeteilt werden: Leiter (z.B. Metalle) und Nichtleiter (z.B. Kunststoffe).
  • Ob ein Material Strom gut oder schlecht leitet kannst du mit einer Testschaltung prüfen.
  • Je mehr Salz im Wasser gelöst ist, desto besser leitet Wasser Strom.
  • Die meisten Gase leiten Strom nicht.

Zum Artikel Zu den Aufgaben

Elektrische Ladung

Grundwissen

  • Die Einheit der elektrischen Ladung, Symbol \(Q\), ist das Coulomb, Symbol \(\rm{C}\).
  • Ein Elektron besitzt die negative Elementarladung: \(q_{\rm{Elektron}}=-e = -1{,}6 \cdot 10^{-19}\,\rm{C}\).

Zum Artikel
Grundwissen

  • Die Einheit der elektrischen Ladung, Symbol \(Q\), ist das Coulomb, Symbol \(\rm{C}\).
  • Ein Elektron besitzt die negative Elementarladung: \(q_{\rm{Elektron}}=-e = -1{,}6 \cdot 10^{-19}\,\rm{C}\).

Zum Artikel Zu den Aufgaben