Direkt zum Inhalt
Suchergebnisse 121 - 150 von 258

Kernfusion

Grundwissen

  • Zwei leichte Atomkerne können zu einem größeren Kern fusioniert werden, insbesondere Deuterium und Tritium zu Helium.
  • Bei der Fusionsreaktion tritt ein Massendefekt auf: Die Gesamtmasse nach der Fusion sind kleiner als die Gesamtmasse vor der Fusion.
  • Mithilfe eines \(A\)-\(\frac{B}{A}\)-Diagramms kannst du grob abschätzen, wie viel Energie bei einer Kernfusion frei wird.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Zwei leichte Atomkerne können zu einem größeren Kern fusioniert werden, insbesondere Deuterium und Tritium zu Helium.
  • Bei der Fusionsreaktion tritt ein Massendefekt auf: Die Gesamtmasse nach der Fusion sind kleiner als die Gesamtmasse vor der Fusion.
  • Mithilfe eines \(A\)-\(\frac{B}{A}\)-Diagramms kannst du grob abschätzen, wie viel Energie bei einer Kernfusion frei wird.

Zum Artikel Zu den Aufgaben

Alphazerfall und Alphastrahlung

Grundwissen

  • Bei Alphastrahlung handelt es sich um eine Teilchenstrahlung aus Heliumatomkernen (zwei Protonen und zwei Neutronen).
  • Alphastrahlung hat eine geringe Reichweite und kann leicht abgeschirmt werden.
  • Alphastrahlung besitzt ein hohes Ionisierungsvermögen (ionisiert viele Teilchen in kleinem Raum).

Zum Artikel
Grundwissen

  • Bei Alphastrahlung handelt es sich um eine Teilchenstrahlung aus Heliumatomkernen (zwei Protonen und zwei Neutronen).
  • Alphastrahlung hat eine geringe Reichweite und kann leicht abgeschirmt werden.
  • Alphastrahlung besitzt ein hohes Ionisierungsvermögen (ionisiert viele Teilchen in kleinem Raum).

Zum Artikel Zu den Aufgaben

Beta-Minus-Zerfall und Beta-Minus-Strahlung

Grundwissen

  • Bei Beta-Minus-Strahlung handelt es sich um eine Teilchenstrahlung aus Elektronen.
  • Bei einem Beta-Minus-Zerfall wandelt sich im Atomkern ein Neutron in ein Proton und ein Elektron (und ein Elektron-Antineutrino) um.
  • Beta-Minus-Strahlung kann durch dünne Metallplatten gut abgeschirmt werden.

Zum Artikel
Grundwissen

  • Bei Beta-Minus-Strahlung handelt es sich um eine Teilchenstrahlung aus Elektronen.
  • Bei einem Beta-Minus-Zerfall wandelt sich im Atomkern ein Neutron in ein Proton und ein Elektron (und ein Elektron-Antineutrino) um.
  • Beta-Minus-Strahlung kann durch dünne Metallplatten gut abgeschirmt werden.

Zum Artikel Zu den Aufgaben

Gammaübergang und Gammastrahlung

Grundwissen

  • Bei Gammastrahlung handelt es sich um elektromagnetische Strahlung in Form von Gammaquanten.
  • Gammastrahlung entsteht, wenn ein Atomkern von angeregtem in einen energetisch günstigeren Zustand übergeht. Dabei ändern sich die Kennzahlen des Kerns nicht.
  • Gammastrahlung hat eine sehr große Reichweite, durchdringt alle Materialien und kann nur mit sehr dicken Bleischichten wirkungsvoll abgeschirmt werden.

Zum Artikel
Grundwissen

  • Bei Gammastrahlung handelt es sich um elektromagnetische Strahlung in Form von Gammaquanten.
  • Gammastrahlung entsteht, wenn ein Atomkern von angeregtem in einen energetisch günstigeren Zustand übergeht. Dabei ändern sich die Kennzahlen des Kerns nicht.
  • Gammastrahlung hat eine sehr große Reichweite, durchdringt alle Materialien und kann nur mit sehr dicken Bleischichten wirkungsvoll abgeschirmt werden.

Zum Artikel Zu den Aufgaben

Geladene Teilchen im elektrischen Längsfeld

Grundwissen

  • Geladene Teilchen, die in einem elektrischen Feld ruhen, werden in Richtung der Feldlinien beschleunigt oder abgebremst.

  • Geladene Teilchen, die sich parallel zu den Feldlinien eines elektrischen Feldes bewegen, werden in Bewegungsrichtung (d.h. in Richtung der Feldlinien) beschleunigt oder abgebremst. Ist das Feld homogen, so ist die Beschleunigung oder Abbremsung gleichmäßig.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Geladene Teilchen, die in einem elektrischen Feld ruhen, werden in Richtung der Feldlinien beschleunigt oder abgebremst.

  • Geladene Teilchen, die sich parallel zu den Feldlinien eines elektrischen Feldes bewegen, werden in Bewegungsrichtung (d.h. in Richtung der Feldlinien) beschleunigt oder abgebremst. Ist das Feld homogen, so ist die Beschleunigung oder Abbremsung gleichmäßig.

Zum Artikel Zu den Aufgaben

Geladene Teilchen im elektrischen Querfeld

Grundwissen

  • Geladene Teilchen, die in einem elektrischen Feld ruhen, werden in Richtung der Feldlinien beschleunigt.

  • Geladenen Teilchen, die sich senkrecht zu den Feldlinien eines elektrischen Feldes bewegen, werden in Richtung der Feldlinien beschleunigt. Ist das elektrische Feld homogen, so bewegen sich die Teilchen dabei auf einer Parabelbahn.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Geladene Teilchen, die in einem elektrischen Feld ruhen, werden in Richtung der Feldlinien beschleunigt.

  • Geladenen Teilchen, die sich senkrecht zu den Feldlinien eines elektrischen Feldes bewegen, werden in Richtung der Feldlinien beschleunigt. Ist das elektrische Feld homogen, so bewegen sich die Teilchen dabei auf einer Parabelbahn.

Zum Artikel Zu den Aufgaben

Geladene Teilchen im magnetischen Längsfeld

Grundwissen

  • Geladene Teilchen, die in einem magnetischen Feld ruhen, erfahren keine Kraft und bleiben in Ruhe.

  • Geladene Teilchen, die sich parallel zu den Feldlinien eines magnetischen Feldes bewegen, erfahren ebenfalls keine Kraft und bewegen sich geradlinig gleichförmig weiter.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Geladene Teilchen, die in einem magnetischen Feld ruhen, erfahren keine Kraft und bleiben in Ruhe.

  • Geladene Teilchen, die sich parallel zu den Feldlinien eines magnetischen Feldes bewegen, erfahren ebenfalls keine Kraft und bewegen sich geradlinig gleichförmig weiter.

Zum Artikel Zu den Aufgaben

Geladene Teilchen im magnetischen Querfeld

Grundwissen

  • Geladene Teilchen, die in einem magnetischen Feld ruhen, erfahren keine Kraft und bleiben in Ruhe.

  • Geladenen Teilchen, die sich senkrecht zu den Feldlinien eines magnetischen Feldes bewegen, erfahren eine Kraft, die senkrecht zur Bewegungsrichtung und senkrecht zu den Feldlinien gerichtet ist und werden in Richtung dieser Kraft beschleunigt. Dabei ändert sich nur die Richtung, nicht aber der Betrag der Geschwindigkeit. Ist das magnetische Feld homogen, so bewegen sich die Teilchen dabei auf einer Kreisbahn.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Geladene Teilchen, die in einem magnetischen Feld ruhen, erfahren keine Kraft und bleiben in Ruhe.

  • Geladenen Teilchen, die sich senkrecht zu den Feldlinien eines magnetischen Feldes bewegen, erfahren eine Kraft, die senkrecht zur Bewegungsrichtung und senkrecht zu den Feldlinien gerichtet ist und werden in Richtung dieser Kraft beschleunigt. Dabei ändert sich nur die Richtung, nicht aber der Betrag der Geschwindigkeit. Ist das magnetische Feld homogen, so bewegen sich die Teilchen dabei auf einer Kreisbahn.

Zum Artikel Zu den Aufgaben

Wärmewirkung des elektrischen Stroms

Grundwissen

  • Die Wärmewirkung von elektrischem Strom wird in der Technik vielfältig genutzt.
  • Mit elektrischem Strom können hohe Temperaturen erzeugt werden.
  • Die Wärmewirkung wird auch als Sicherung genutzt, um Elektrogeräte zu schützen (Schmelzsicherung).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Wärmewirkung von elektrischem Strom wird in der Technik vielfältig genutzt.
  • Mit elektrischem Strom können hohe Temperaturen erzeugt werden.
  • Die Wärmewirkung wird auch als Sicherung genutzt, um Elektrogeräte zu schützen (Schmelzsicherung).

Zum Artikel Zu den Aufgaben

Chemische Wirkung des elektrischen Stroms

Grundwissen

  • Mit Hilfe von elektrischem Strom können einige Stoffe zersetzt oder in andere Stoffe umgesetzt werden.
  • Die Elektrolyse von Wasser und das Galvanisieren sind zwei technische Anwendungen für die chemische Wirkung von Strom.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Mit Hilfe von elektrischem Strom können einige Stoffe zersetzt oder in andere Stoffe umgesetzt werden.
  • Die Elektrolyse von Wasser und das Galvanisieren sind zwei technische Anwendungen für die chemische Wirkung von Strom.

Zum Artikel Zu den Aufgaben

Leuchtwirkung des elektrischen Stroms

Grundwissen

  • Die Leuchtwirkung von elektrischem Strom wird im Alltag an vielen Stellen deutlich.
  • Es gibt viele unterschiedliche Lampentypen: Glühlampen, Halogenlampen, Leuchtstoffröhren und LEDs
  • LEDs und Leuchtstoffröhren wandeln einen größeren Teil der Energie in Licht um als Glühlampen.

Zum Artikel
Grundwissen

  • Die Leuchtwirkung von elektrischem Strom wird im Alltag an vielen Stellen deutlich.
  • Es gibt viele unterschiedliche Lampentypen: Glühlampen, Halogenlampen, Leuchtstoffröhren und LEDs
  • LEDs und Leuchtstoffröhren wandeln einen größeren Teil der Energie in Licht um als Glühlampen.

Zum Artikel Zu den Aufgaben

Potentielle Energie im homogenen Feld

Grundwissen

  • Bewegt sich eine Ladung im homogenen E-Feld in Richtung oder entgegen der Richtung der Feldlinien, so ändert sich die potentielle Energie der Ladung.
  • Allgemein ist die Änderung der potentiellen Energie gleich der negativen Feldarbeit, also \(\Delta {E_{\rm{pot}}} = - {W_{\rm{Feld}}}\).
  • Die Nulllage der potentiellen Energie wird meist auf die negative Platte gelegt.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bewegt sich eine Ladung im homogenen E-Feld in Richtung oder entgegen der Richtung der Feldlinien, so ändert sich die potentielle Energie der Ladung.
  • Allgemein ist die Änderung der potentiellen Energie gleich der negativen Feldarbeit, also \(\Delta {E_{\rm{pot}}} = - {W_{\rm{Feld}}}\).
  • Die Nulllage der potentiellen Energie wird meist auf die negative Platte gelegt.

Zum Artikel Zu den Aufgaben

Magnetfeld eines geraden Leiters

Grundwissen

  • Das Magnetfeld um einen geraden Leiter verläuft in konzentrischen Kreisen um den Leiter.
  • Richtung und Stärke des Magnetfeldes werden u.a. von Stromstärke und Stromrichtung im Leiter bestimmt.
  • Die Richtung und die Orientierung des Magnetfeldes kannst du mit der Rechten-Faust-Regel ermitteln.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Das Magnetfeld um einen geraden Leiter verläuft in konzentrischen Kreisen um den Leiter.
  • Richtung und Stärke des Magnetfeldes werden u.a. von Stromstärke und Stromrichtung im Leiter bestimmt.
  • Die Richtung und die Orientierung des Magnetfeldes kannst du mit der Rechten-Faust-Regel ermitteln.

Zum Artikel Zu den Aufgaben

Magnetfeld einer Zylinderspule

Grundwissen

  • Das Magnetfeld im Innenraum einer langgestreckten Spule ist annähernd homogen.
  • Für die magnetische Feldstärke (magnetische Flussdichte) in einer luftgefüllten Spule gilt \(B = {\mu _0} \cdot \frac{{I \cdot N}}{l}\).
  • Die magnetische Feldstärke kann mithilfe ferromagnetischer Stoffe im Innenraum um den materialabhängigen Faktor \(\mu_r\) verstärkt werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Das Magnetfeld im Innenraum einer langgestreckten Spule ist annähernd homogen.
  • Für die magnetische Feldstärke (magnetische Flussdichte) in einer luftgefüllten Spule gilt \(B = {\mu _0} \cdot \frac{{I \cdot N}}{l}\).
  • Die magnetische Feldstärke kann mithilfe ferromagnetischer Stoffe im Innenraum um den materialabhängigen Faktor \(\mu_r\) verstärkt werden.

Zum Artikel Zu den Aufgaben

Magnetfeld und Feldlinien

Grundwissen

  • Das Magnetfeld ist der Wirkungsbereich eines Magneten. Es beschreibt seine Kraftwirkung auf einen anderen Magneten.
  • Magnetfelder können mit Feldlinienbildern dargestellt werden.
  • Magnetische Feldlinien verlaufen außerhalb des Magneten vom Nord- zum Südpol und schneiden sich nicht.
  • Die Erde ist von einem Magnetfeld umgeben. Am geografischen Nordpol ist der magnetische Südpol.

Zum Artikel
Grundwissen

  • Das Magnetfeld ist der Wirkungsbereich eines Magneten. Es beschreibt seine Kraftwirkung auf einen anderen Magneten.
  • Magnetfelder können mit Feldlinienbildern dargestellt werden.
  • Magnetische Feldlinien verlaufen außerhalb des Magneten vom Nord- zum Südpol und schneiden sich nicht.
  • Die Erde ist von einem Magnetfeld umgeben. Am geografischen Nordpol ist der magnetische Südpol.

Zum Artikel Zu den Aufgaben

Ionisierung durch Strahlung

Grundwissen

  • \(\alpha\)-, \(\beta\)- und \(\gamma\)-Strahlung kann andere Teilchen ionisieren.
  • Das Ionisationsvermögen gibt an, wie viele Teilchen auf einer bestimmten Wegstrecke durch die Strahlung ionisiert werden.
  • Das Ionisationsvermögen von \(\alpha\)-Strahlung ist höher als das von \(\beta\)-Strahlung, das von \(\beta\)- höher als von \(\gamma\)-Strahlung.
  • Durch Ionisationsprozesse schädigt \(\alpha\)-, \(\beta\)- und \(\gamma\)-Strahlung Gewebezellen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • \(\alpha\)-, \(\beta\)- und \(\gamma\)-Strahlung kann andere Teilchen ionisieren.
  • Das Ionisationsvermögen gibt an, wie viele Teilchen auf einer bestimmten Wegstrecke durch die Strahlung ionisiert werden.
  • Das Ionisationsvermögen von \(\alpha\)-Strahlung ist höher als das von \(\beta\)-Strahlung, das von \(\beta\)- höher als von \(\gamma\)-Strahlung.
  • Durch Ionisationsprozesse schädigt \(\alpha\)-, \(\beta\)- und \(\gamma\)-Strahlung Gewebezellen.

Zum Artikel Zu den Aufgaben

Kopplungsparameter

Grundwissen

  • Der Kopplungsparameter bestimmt, wie stark und wie wahrscheinlich eine Wechselwirkung ist.
  • Für jede der vier fundamentalen Wechselwirkungen gibt es einen Kopplungsparameter \(\alpha\).
  • Der Kopplungsparameter der starken Wechselwirkung \(\alpha_{\rm{S}}\) hängt vom Abstand der Elementarteilchen ab und liegt im Bereich von \(0{,}1\) bis \(0{,}5\).
  • Der Kopplungsparameter der schwachen Wechselwirkung ist\({\alpha _{\rm{W}}} \approx \frac{1}{{30}}\) und der elektromagnetischen Wechselwirkung \({\alpha _{\rm{em}}} \approx \frac{1}{{137}}\).

Zum Artikel
Grundwissen

  • Der Kopplungsparameter bestimmt, wie stark und wie wahrscheinlich eine Wechselwirkung ist.
  • Für jede der vier fundamentalen Wechselwirkungen gibt es einen Kopplungsparameter \(\alpha\).
  • Der Kopplungsparameter der starken Wechselwirkung \(\alpha_{\rm{S}}\) hängt vom Abstand der Elementarteilchen ab und liegt im Bereich von \(0{,}1\) bis \(0{,}5\).
  • Der Kopplungsparameter der schwachen Wechselwirkung ist\({\alpha _{\rm{W}}} \approx \frac{1}{{30}}\) und der elektromagnetischen Wechselwirkung \({\alpha _{\rm{em}}} \approx \frac{1}{{137}}\).

Zum Artikel Zu den Aufgaben

Botenteilchen

Grundwissen

  • Vermittler der starken Wechselwirkung sind 8 verschiedene Gluonen, die verschiedene Kombinationen an Farbladungen tragen.
  • Vermittler der schwachen Wechselwirkung sind \(W^+\)-, \(W^-\)- und \(Z\)-Bosonen, die eine sehr kurze Lebensdauer und eine sehr geringe Reichweite von ca. \(2\cdot 10^{-18}\,\rm{m}\) haben.
  • Photonen sind die Botenteilchen der elektromagnetischen Wechselwirkung, besitzen keinerlei Ladung und haben daher eine unendliche Reichweite.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Vermittler der starken Wechselwirkung sind 8 verschiedene Gluonen, die verschiedene Kombinationen an Farbladungen tragen.
  • Vermittler der schwachen Wechselwirkung sind \(W^+\)-, \(W^-\)- und \(Z\)-Bosonen, die eine sehr kurze Lebensdauer und eine sehr geringe Reichweite von ca. \(2\cdot 10^{-18}\,\rm{m}\) haben.
  • Photonen sind die Botenteilchen der elektromagnetischen Wechselwirkung, besitzen keinerlei Ladung und haben daher eine unendliche Reichweite.

Zum Artikel Zu den Aufgaben

Ladungen

Grundwissen

  • Ladungen sind fundamentale und unveränderliche Eigenschaften eines Teilchens, sie können nur bestimmte Werte annehmen (sind gequantelt), bleiben erhalten und bestimmen, ob ein Teilchen einer bestimmten Wechselwirkung unterliegt.
  • Es gibt sechs verschiedene Farbladungen: rot, grün, blau, anti-rot, anti-grün und anti-blau und die Einordnung der Elementarteilchen geschieht in einem zweidimensionalen Farbgitter.
  • Die schwache Ladung hat das Formelzeichen \(I\) und kann ganzzahlige Vielfache von \(\frac{1}{2}\) als Werte annehmen und in Vielteilchensystemen addieren sich die Ladungen der Elementarteilchen zahlenmäßig..
  •  Die Größe "elektrische Ladung" hat ganzzahlige Vielfache von \(\frac{1}{3}\) als Werte und in Vielteilchensystemen addieren sich die Ladungen der Elementarteilchen zahlenmäßig.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ladungen sind fundamentale und unveränderliche Eigenschaften eines Teilchens, sie können nur bestimmte Werte annehmen (sind gequantelt), bleiben erhalten und bestimmen, ob ein Teilchen einer bestimmten Wechselwirkung unterliegt.
  • Es gibt sechs verschiedene Farbladungen: rot, grün, blau, anti-rot, anti-grün und anti-blau und die Einordnung der Elementarteilchen geschieht in einem zweidimensionalen Farbgitter.
  • Die schwache Ladung hat das Formelzeichen \(I\) und kann ganzzahlige Vielfache von \(\frac{1}{2}\) als Werte annehmen und in Vielteilchensystemen addieren sich die Ladungen der Elementarteilchen zahlenmäßig..
  •  Die Größe "elektrische Ladung" hat ganzzahlige Vielfache von \(\frac{1}{3}\) als Werte und in Vielteilchensystemen addieren sich die Ladungen der Elementarteilchen zahlenmäßig.

Zum Artikel Zu den Aufgaben

Wechselwirkungen

Grundwissen

  • Die starke Wechselwirkung wird von der sog. Farbladung bestimmt und Botenteilchen der starken Wechselwirkung sind die Gluonen.
  • Der schwachen Wechselwirkung unterliegen nur Teilchen mit schwacher Ladung. Botenteilchen sind die W- und Z-Bosonen.
  • Der elektromagnetischen Wechselwirkung unterliegen nur geladene Teilchen. Botenteilchen ist das Photon.

Zum Artikel
Grundwissen

  • Die starke Wechselwirkung wird von der sog. Farbladung bestimmt und Botenteilchen der starken Wechselwirkung sind die Gluonen.
  • Der schwachen Wechselwirkung unterliegen nur Teilchen mit schwacher Ladung. Botenteilchen sind die W- und Z-Bosonen.
  • Der elektromagnetischen Wechselwirkung unterliegen nur geladene Teilchen. Botenteilchen ist das Photon.

Zum Artikel Zu den Aufgaben

Starke Wechselwirkung

Grundwissen

  • Der starken Wechselwirkung unterliegen nur Teilchen, die eine Farbladung besitzen, also auf Quarks. Es gibt 6 verschiedene Farbladungen: rot, grün, blau, anti-rot, anti-grün und anti-blau.
  • Die Botenteilchen der starken Wechselwirkung sind die acht Gluonen. Diese tragen selbst unterschiedliche Farbladungen.
  • Es gibt keine freien Quarks, sie finden sich immer in Zweier- oder Dreiergruppen.

Zum Artikel
Grundwissen

  • Der starken Wechselwirkung unterliegen nur Teilchen, die eine Farbladung besitzen, also auf Quarks. Es gibt 6 verschiedene Farbladungen: rot, grün, blau, anti-rot, anti-grün und anti-blau.
  • Die Botenteilchen der starken Wechselwirkung sind die acht Gluonen. Diese tragen selbst unterschiedliche Farbladungen.
  • Es gibt keine freien Quarks, sie finden sich immer in Zweier- oder Dreiergruppen.

Zum Artikel Zu den Aufgaben

Schwache Wechselwirkung

Grundwissen

  • Nur Teilchen mit einer von Null verschiedenen schwachen Ladung unterliegen der schwachen Wechselwirkung.
  • Die schwache Wechselwirkung wird durch Absorption und Emission von \(W^+\)-, \(W^-\), und \(Z\)-Bosonen vermittelt.
  • Alle Materieteilchen besitzen eine schwache Ladung von \(I=+\frac{1}{2}\) oder \(I=-\frac{1}{2}\). In ihrer Darstellung ist das Vorzeichen oft über die Ausrichtung der Spitze bzw. Rundung codiert.
  • Von den Botenteilchen haben nur die \(W\)-Bosonen eine schwache Ladung von \(I=\pm 1\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Nur Teilchen mit einer von Null verschiedenen schwachen Ladung unterliegen der schwachen Wechselwirkung.
  • Die schwache Wechselwirkung wird durch Absorption und Emission von \(W^+\)-, \(W^-\), und \(Z\)-Bosonen vermittelt.
  • Alle Materieteilchen besitzen eine schwache Ladung von \(I=+\frac{1}{2}\) oder \(I=-\frac{1}{2}\). In ihrer Darstellung ist das Vorzeichen oft über die Ausrichtung der Spitze bzw. Rundung codiert.
  • Von den Botenteilchen haben nur die \(W\)-Bosonen eine schwache Ladung von \(I=\pm 1\).

Zum Artikel Zu den Aufgaben

Elektromagnetische Wechselwirkung

Grundwissen

  • Nur elektrische geladene Teilchen unterliegen der elektromagnetischen Wechselwirkung, die durch Absorption und Emission von Photonen vermittelt wird.
  • Die elektrische Ladung eines Elementarteilchens kann als Wert nur ganzzahlige Vielfache von \(\frac{1}{3}\) annehmen.
  • Die elektromagnetische Wechselwirkung hat eine unendlich große Reichweite, aber ihre Kraft nimmt quadratisch mit dem Abstand der elektrisch geladenen Teilchen ab.

Zum Artikel
Grundwissen

  • Nur elektrische geladene Teilchen unterliegen der elektromagnetischen Wechselwirkung, die durch Absorption und Emission von Photonen vermittelt wird.
  • Die elektrische Ladung eines Elementarteilchens kann als Wert nur ganzzahlige Vielfache von \(\frac{1}{3}\) annehmen.
  • Die elektromagnetische Wechselwirkung hat eine unendlich große Reichweite, aber ihre Kraft nimmt quadratisch mit dem Abstand der elektrisch geladenen Teilchen ab.

Zum Artikel Zu den Aufgaben

Größen zur Beschreibung von Induktionsvorgängen

Grundwissen

  • Bei unseren Versuchen und Aufgaben zur Induktion ist das magnetische Feld stets homogen und kann durch einen einzigen Feldvektor \(\vec B\) beschrieben werden.
  • Bei unseren Versuchen und Aufgaben zur Induktion ist die Leiterschleife stets eben und kann durch einen einzigen Flächenvektor \(\vec A\) beschrieben werden. \(\vec A\) beschreibt dabei die (Teil-)Fläche der Leiterschleife, die sich im magnetischen Feld befindet.
  • Bei Induktionsvorgängen ist \(\varphi\) die Weite des Winkels zwischen dem Feldvektor \(\vec B\) und dem Flächenvektor \(\vec A\).

Zum Artikel
Grundwissen

  • Bei unseren Versuchen und Aufgaben zur Induktion ist das magnetische Feld stets homogen und kann durch einen einzigen Feldvektor \(\vec B\) beschrieben werden.
  • Bei unseren Versuchen und Aufgaben zur Induktion ist die Leiterschleife stets eben und kann durch einen einzigen Flächenvektor \(\vec A\) beschrieben werden. \(\vec A\) beschreibt dabei die (Teil-)Fläche der Leiterschleife, die sich im magnetischen Feld befindet.
  • Bei Induktionsvorgängen ist \(\varphi\) die Weite des Winkels zwischen dem Feldvektor \(\vec B\) und dem Flächenvektor \(\vec A\).

Zum Artikel Zu den Aufgaben

Elektromagnetischer Schwingkreis ungedämpft

Grundwissen

  • Ein Schwingkreis besteht zentral aus einem Kondensator mit Kapazität \(C\), der zu Beginn mittels elektrischer Quelle auf \(U_0\) aufgeladen wird, und einer Spule der Induktivität \(L\).
  • Im ungedämpften Fall schwingt der Kreis harmonisch mit der Schwingungsdauer \(T = 2 \cdot \pi \cdot \sqrt {L \cdot C}\)
  • Die Spannung über dem Kondensator wird beschrieben durch \(U_C(t) = \left| {{U_0}} \right| \cdot \cos \left( {{\omega _0} \cdot t} \right)\quad {\rm{mit}}\quad{\omega _0} = \sqrt {\frac{1}{L \cdot C}}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ein Schwingkreis besteht zentral aus einem Kondensator mit Kapazität \(C\), der zu Beginn mittels elektrischer Quelle auf \(U_0\) aufgeladen wird, und einer Spule der Induktivität \(L\).
  • Im ungedämpften Fall schwingt der Kreis harmonisch mit der Schwingungsdauer \(T = 2 \cdot \pi \cdot \sqrt {L \cdot C}\)
  • Die Spannung über dem Kondensator wird beschrieben durch \(U_C(t) = \left| {{U_0}} \right| \cdot \cos \left( {{\omega _0} \cdot t} \right)\quad {\rm{mit}}\quad{\omega _0} = \sqrt {\frac{1}{L \cdot C}}\)

Zum Artikel Zu den Aufgaben

Elektromagnetischer Schwingkreis gedämpft

Grundwissen

  • Der Widerstand der Bauteile in einem Schwingkreis führt zur Dämpfung der Schwingung.
  • Die Differentialgleichung der gedämpften elektromagnetischen Schwingung ist \(L \cdot \ddot Q + \frac{Q}{C} + R \cdot \dot Q = 0\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Der Widerstand der Bauteile in einem Schwingkreis führt zur Dämpfung der Schwingung.
  • Die Differentialgleichung der gedämpften elektromagnetischen Schwingung ist \(L \cdot \ddot Q + \frac{Q}{C} + R \cdot \dot Q = 0\).

Zum Artikel Zu den Aufgaben

Elektromagnetischer Schwingkreis angeregt

Grundwissen

  • Einem angeregten elektromagnetischen Schwingkreis wird eine äußere Spannung \(U(t)\) aufgeprägt.
  •  Die Differentialgleichung lautet \(U(t) = L \cdot \ddot Q + \frac{Q}{C} + R \cdot \dot Q\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Einem angeregten elektromagnetischen Schwingkreis wird eine äußere Spannung \(U(t)\) aufgeprägt.
  •  Die Differentialgleichung lautet \(U(t) = L \cdot \ddot Q + \frac{Q}{C} + R \cdot \dot Q\)

Zum Artikel Zu den Aufgaben

Einfache Stromkreise

Grundwissen

  • Es gibt viele verschieden Arten Stromkreise zu schalten.
  • Bei UND-Schaltungen müssen für einen Stromfluss alle Schalter geschlossen sein.
  • Bei ODER-Schaltungen muss für einen Stromfluss nur ein Schalter geschlossen sein.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Es gibt viele verschieden Arten Stromkreise zu schalten.
  • Bei UND-Schaltungen müssen für einen Stromfluss alle Schalter geschlossen sein.
  • Bei ODER-Schaltungen muss für einen Stromfluss nur ein Schalter geschlossen sein.

Zum Artikel Zu den Aufgaben

Kraft zwischen Magnetpolen

Grundwissen

  • Gleichartige Pole stoßen sich ab, verschiedenartige Pole ziehen sich an.
  • Der Betrag der (anziehenden oder abstoßenden) Kraft wächst mit der "Stärke" der Magnetpole.
  • Der Betrag der (anziehenden oder abstoßenden) Kraft sinkt mit der Vergrößerung des Abstands zwischen den Magnetpolen.

Zum Artikel
Grundwissen

  • Gleichartige Pole stoßen sich ab, verschiedenartige Pole ziehen sich an.
  • Der Betrag der (anziehenden oder abstoßenden) Kraft wächst mit der "Stärke" der Magnetpole.
  • Der Betrag der (anziehenden oder abstoßenden) Kraft sinkt mit der Vergrößerung des Abstands zwischen den Magnetpolen.

Zum Artikel Zu den Aufgaben

Kraft zwischen elektrischen Ladungen

Grundwissen

  • Gleichnamige Ladungen stoßen sich ab, ungleichnamige Ladungen ziehen sich an.
  • Der Betrag der (anziehenden oder abstoßenden) Kraft wächst mit der "Größe" der Ladungen.
  • Der Betrag der (anziehenden oder abstoßenden) Kraft sinkt mit der Vergrößerung des Abstands zwischen den Ladungen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Gleichnamige Ladungen stoßen sich ab, ungleichnamige Ladungen ziehen sich an.
  • Der Betrag der (anziehenden oder abstoßenden) Kraft wächst mit der "Größe" der Ladungen.
  • Der Betrag der (anziehenden oder abstoßenden) Kraft sinkt mit der Vergrößerung des Abstands zwischen den Ladungen.

Zum Artikel Zu den Aufgaben