Direkt zum Inhalt
Suchergebnisse 211 - 240 von 486

Längenkontraktion

Grundwissen

  • Für bewegte Beobachter sind Strecken verkürzt.
  • Für die Längenkontraktion gilt: \(\Delta x' = \Delta x \cdot \sqrt{1 - \left(\frac{v}{c}\right)^2}\)
  • Die Längenkontraktion findet nur in Bewegungsrichtung statt.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Für bewegte Beobachter sind Strecken verkürzt.
  • Für die Längenkontraktion gilt: \(\Delta x' = \Delta x \cdot \sqrt{1 - \left(\frac{v}{c}\right)^2}\)
  • Die Längenkontraktion findet nur in Bewegungsrichtung statt.

Zum Artikel Zu den Aufgaben

EINSTEINs Postulate

Grundwissen

  • Erstes Postulat (Relativitätsprinzip): Alle Inertialsysteme sind bezüglich aller physikalischen Gesetze gleichberechtigt.
  • Zweites Postulat (Konstanz der Lichtgeschwindigkeit): Die Vakuumlichtgeschwindigkeit \(c\) ist in allen Inertialsystemen gleich groß.

Zum Artikel
Grundwissen

  • Erstes Postulat (Relativitätsprinzip): Alle Inertialsysteme sind bezüglich aller physikalischen Gesetze gleichberechtigt.
  • Zweites Postulat (Konstanz der Lichtgeschwindigkeit): Die Vakuumlichtgeschwindigkeit \(c\) ist in allen Inertialsystemen gleich groß.

Zum Artikel Zu den Aufgaben

Geschwindigkeitsbetrachtung

Grundwissen

  • Klassische können Geschwindigkeiten von einem bewegten Bezugssystem und einer Bewegung innerhalb einfach addiert werden, um die Geschwindigkeit zu ermitteln, die man im ruhenden Bezugssystem messen würde.
  • Die Konstanz der Lichtgeschwindigkeit hat zur Folge, dass diese einfache Addition nicht richtig sein kann.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Klassische können Geschwindigkeiten von einem bewegten Bezugssystem und einer Bewegung innerhalb einfach addiert werden, um die Geschwindigkeit zu ermitteln, die man im ruhenden Bezugssystem messen würde.
  • Die Konstanz der Lichtgeschwindigkeit hat zur Folge, dass diese einfache Addition nicht richtig sein kann.

Zum Artikel Zu den Aufgaben

Inertialsystem

Grundwissen

  • Ein Inertialsystem ist ein Bezugssystem, in dem ein kräftefreier Körper in Ruhe verharrt oder sich geradlinig-gleichförmig bewegt.
  • Alle Systeme, die sich geradlinig-gleichförmig gegenüber einem Inertialsystem bewegen, sind ebenfalls Inertialsysteme.

Zum Artikel
Grundwissen

  • Ein Inertialsystem ist ein Bezugssystem, in dem ein kräftefreier Körper in Ruhe verharrt oder sich geradlinig-gleichförmig bewegt.
  • Alle Systeme, die sich geradlinig-gleichförmig gegenüber einem Inertialsystem bewegen, sind ebenfalls Inertialsysteme.

Zum Artikel Zu den Aufgaben

Effekte

Grundwissen

  • Zeitdilatation: Eine bewegte Uhr geht langsamer als eine gleichartige im Ruhesystem!
  • Gleichzeitigkeit ist relativ und hängt davon ab, von welchem Bezugssystem aus die Beobachtung erfolgt.
  • Längenkontraktion: Ein bewegter Maßstab ist in Bewegungsrichtung kürzer als im Ruhesystem!

Zum Artikel
Grundwissen

  • Zeitdilatation: Eine bewegte Uhr geht langsamer als eine gleichartige im Ruhesystem!
  • Gleichzeitigkeit ist relativ und hängt davon ab, von welchem Bezugssystem aus die Beobachtung erfolgt.
  • Längenkontraktion: Ein bewegter Maßstab ist in Bewegungsrichtung kürzer als im Ruhesystem!

Zum Artikel Zu den Aufgaben

Zeitdilatation

Grundwissen

  • Zeitdilatation: Eine relativ zu einem Beobachter bewegte Uhr geht aus der Sicht des Beobachters langsamer als ein Satz synchronisierter Uhren im "Beobachter-System".
  • Vereinfacht: Bewegte Uhren gehen langsamer.
  • Der Zusammenhang zwischen Zeit \(\Delta t\) im ruhenden und \(\Delta t'\) im bewegten System ist \(\Delta t = \frac{\Delta t'}{\sqrt{1 - (\frac{v}{c})^2}}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Zeitdilatation: Eine relativ zu einem Beobachter bewegte Uhr geht aus der Sicht des Beobachters langsamer als ein Satz synchronisierter Uhren im "Beobachter-System".
  • Vereinfacht: Bewegte Uhren gehen langsamer.
  • Der Zusammenhang zwischen Zeit \(\Delta t\) im ruhenden und \(\Delta t'\) im bewegten System ist \(\Delta t = \frac{\Delta t'}{\sqrt{1 - (\frac{v}{c})^2}}\)

Zum Artikel Zu den Aufgaben

Gleichzeitigkeit

Grundwissen

  • In einem Inertialsystem finden zwei Ereignisse an zwei verschiedenen Orten gleichzeitig statt, wenn sie von einem Lichtblitz ausgelöst werden können, der genau aus der Mitte zwischen ihren Orten ausgeht.
  • Finden zwei Ereignisse in einem Inertialsystem gleichzeitig statt, so finden sie in einem zweiten, gegenüber dem ersten Inertialsystem bewegten Inertialsystem zu verschiedenen Zeiten statt.
  • Auch Gleichzeitigkeit ist relativ.

Zum Artikel Zu den Aufgaben
Grundwissen

  • In einem Inertialsystem finden zwei Ereignisse an zwei verschiedenen Orten gleichzeitig statt, wenn sie von einem Lichtblitz ausgelöst werden können, der genau aus der Mitte zwischen ihren Orten ausgeht.
  • Finden zwei Ereignisse in einem Inertialsystem gleichzeitig statt, so finden sie in einem zweiten, gegenüber dem ersten Inertialsystem bewegten Inertialsystem zu verschiedenen Zeiten statt.
  • Auch Gleichzeitigkeit ist relativ.

Zum Artikel Zu den Aufgaben

Relativistische Masse und Impuls

Grundwissen

  • Auch die Masse eines Teilchens und sein Impuls unterliegen relativistischen Effekten.
  • Die relativistische Masse  nimmt mit der Geschwindigkeit \(v\) eines Teilchens stark zu, es gilt: \(m_{\rm{rel}}=\frac{m_0}{\sqrt{1 - \left(\frac{v}{c}\right)^2}}\)
  • Für den relativistischen Impuls gilt \(p = m_{\rm{rel}}\cdot v    \Rightarrow     p = \frac{m_0}{\sqrt{1 - \left(\frac{v}{c}\right)^2}} \cdot v\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Auch die Masse eines Teilchens und sein Impuls unterliegen relativistischen Effekten.
  • Die relativistische Masse  nimmt mit der Geschwindigkeit \(v\) eines Teilchens stark zu, es gilt: \(m_{\rm{rel}}=\frac{m_0}{\sqrt{1 - \left(\frac{v}{c}\right)^2}}\)
  • Für den relativistischen Impuls gilt \(p = m_{\rm{rel}}\cdot v    \Rightarrow     p = \frac{m_0}{\sqrt{1 - \left(\frac{v}{c}\right)^2}} \cdot v\)

Zum Artikel Zu den Aufgaben

Geschwindigkeitsaddition

Grundwissen

  • Ist \(u\) die Geschwindigkeit eines Körpers im System S und \(v\) die Geschwindigkeit des Systems S' in Bezug auf S und \(u'\) die Geschwindigkeit des Körpers im System S', dann gilt der Zusammenhang \(u = \frac{{u' + v}}{{1 + \frac{{u' \cdot v}}{{{c^2}}}}}\).

 

 

 

Zum Artikel
Grundwissen

  • Ist \(u\) die Geschwindigkeit eines Körpers im System S und \(v\) die Geschwindigkeit des Systems S' in Bezug auf S und \(u'\) die Geschwindigkeit des Körpers im System S', dann gilt der Zusammenhang \(u = \frac{{u' + v}}{{1 + \frac{{u' \cdot v}}{{{c^2}}}}}\).

 

 

 

Zum Artikel Zu den Aufgaben

Albert Abraham MICHELSON (1852 - 1931) und Edward Williams MORLEY (1838 - 1923)

Geschichte
Geschichte

Albert EINSTEIN (1879 - 1955)

Geschichte
Geschichte

Quiz zur speziellen Relativitätstheorie

Aufgabe ( Quiz )
Aufgabe ( Quiz )

Betatron (Abitur BY 2019 Ph11-2 A2)

Aufgabe ( Übungsaufgaben )

Abb. 1 Querschnitt eines BetatronsDas Betatron ist ein sehr kompakter Beschleuniger für Elektronen. Diese kreisen innerhalb einer evakuierten…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Abb. 1 Querschnitt eines BetatronsDas Betatron ist ein sehr kompakter Beschleuniger für Elektronen. Diese kreisen innerhalb einer evakuierten…

Zur Aufgabe

Strahlentherapie mit Elektronen (Abitur BY 2020 Ph11-1 A1)

Aufgabe ( Übungsaufgaben )

Durch Bestrahlung mit energiereichen Elektronen können Tumore auf der Hautoberfläche behandelt werden. Hierzu werden Elektronen in einem…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Durch Bestrahlung mit energiereichen Elektronen können Tumore auf der Hautoberfläche behandelt werden. Hierzu werden Elektronen in einem…

Zur Aufgabe

Videoanleitung zu Experimenten zur Wärmeleitung

Weblink

Dieses Video zeigt und erklärt einige Experimente zum Thema Wärmeleitung und -kapazität. Die Experimente können Physikunterricht aber auch im Homeschooling mit Haushaltgegenständen leicht reproduziert werden. Das Video stammt von Prof. André Bresges, Professor für Physik an der Universität Köln.

Zur Übersicht Zum externen Weblink
Weblink

Dieses Video zeigt und erklärt einige Experimente zum Thema Wärmeleitung und -kapazität. Die Experimente können Physikunterricht aber auch im Homeschooling mit Haushaltgegenständen leicht reproduziert werden. Das Video stammt von Prof. André Bresges, Professor für Physik an der Universität Köln.

Zur Übersicht Zum externen Weblink

Video zur Kompressibilität von Gasen und Flüssigkeiten

Weblink

Dieses Video zeigt den Unterschied in der Kompressibilität zwischen Gas und Flüssigkeit. Dazu werden Luft und Wasser in einer verschlossenen Spritze komprimiert. Das Video wurde von der Ecole Science als Open Educational Resource (OER) veröffentlicht.

Zur Übersicht Zum externen Weblink
Weblink

Dieses Video zeigt den Unterschied in der Kompressibilität zwischen Gas und Flüssigkeit. Dazu werden Luft und Wasser in einer verschlossenen Spritze komprimiert. Das Video wurde von der Ecole Science als Open Educational Resource (OER) veröffentlicht.

Zur Übersicht Zum externen Weblink

Video der Brown'schen Bewegung von Farbpartikeln

Weblink

Dieses Video zeigt die Brown'sche Bewegung von Farbpartikeln in einer Flüssigkeit. Das Video wurde von der Ecole Science als Open Educational Resource (OER) veröffentlicht.

Zur Übersicht Zum externen Weblink
Weblink

Dieses Video zeigt die Brown'sche Bewegung von Farbpartikeln in einer Flüssigkeit. Das Video wurde von der Ecole Science als Open Educational Resource (OER) veröffentlicht.

Zur Übersicht Zum externen Weblink

Video der Brown'schen Bewegung mit einer Teilchenströmung

Weblink

Dieses Video zeigt die Brown'sche Bewegung von Farbpartikeln und Milchfetttröpfchen, jeweils mit einem zusätzlichen Teilchenstrom in eine Richtung. Das Video wurde von der Ecole Science als Open Educational Resource (OER) veröffentlicht.

Zur Übersicht Zum externen Weblink
Weblink

Dieses Video zeigt die Brown'sche Bewegung von Farbpartikeln und Milchfetttröpfchen, jeweils mit einem zusätzlichen Teilchenstrom in eine Richtung. Das Video wurde von der Ecole Science als Open Educational Resource (OER) veröffentlicht.

Zur Übersicht Zum externen Weblink

Video zur Wärmeströmung in Wasser

Weblink

Dieses Video zeigt ein Experiment zur Darstellung des Wärmetransports in Wasser. Dabei wird in einer Röhre Wasser erwärmt, das dadurch aufsteigt und eine Rundströmung verursacht. Das Video wurde von der Ecole Science als Open Educational Resource (OER) veröffentlicht.

Zur Übersicht Zum externen Weblink
Weblink

Dieses Video zeigt ein Experiment zur Darstellung des Wärmetransports in Wasser. Dabei wird in einer Röhre Wasser erwärmt, das dadurch aufsteigt und eine Rundströmung verursacht. Das Video wurde von der Ecole Science als Open Educational Resource (OER) veröffentlicht.

Zur Übersicht Zum externen Weblink

Video zur Sublimation von Trockeneis

Weblink

Dieses Video zeigt die Sublimation von Trockeneis auf einer heißen Herdplatte. Das Video wurde von der Ecole Science als Open Educational Resource (OER) veröffentlicht.

Zur Übersicht Zum externen Weblink
Weblink

Dieses Video zeigt die Sublimation von Trockeneis auf einer heißen Herdplatte. Das Video wurde von der Ecole Science als Open Educational Resource (OER) veröffentlicht.

Zur Übersicht Zum externen Weblink

Infos zum Treibhauseffekt vom Umweltbundesamt

Weblink
Weblink

Warum steigt ein Heißluftballon?

Aufgabe ( Quiz )
Aufgabe ( Quiz )

Wärmeversorgung in der Schule - Ein Unterrichtsmodul der iMINT-Akademie Berlin

Weblink

Im Fachset Physik der iMINT-Akademie Berlin wurde ein Unterrichtsmodul zum Thema „Wärme im Alltag – Energie ist immer dabei“ entwickelt. Dabei sollen die Arten der Wärmeübertragung im Kontext der Wärmeversorgung in der Schule vermittelt werden. Wesentliche Ziele sind die individuelle Förderung aller Schülerinnen und Schüler und die Berücksichtigung der Bedürfnisse der Lernenden mit geistigen oder mit emotional- bzw. sozialen Entwicklungsstörungen. Besonders im Übungsteil wird der Schwerpunkt der Kompetenzentwicklung im Bereich der Sprachbildung deutlich. Durch die Arbeit an Lernstationen erhalten die Schülerinnen und Schüler Zeit, um sich die Zusammenhänge einer relativ komplexen technischen Anlage, der Heizungsanlage ihrer Schule, zu erarbeiten. Außerdem können sie Verantwortung für die eigene Schul- und Lebenswelt übernehmen.
Dieses OER-Material und weiteres Material der iMINT-Akademie Berlin gibt es unter:
https://bildungsserver.berlin-brandenburg.de/unterricht/faecher/mathematik-naturwissenschaften/mint/i-mint-akademie/weiterfuehrende-schulen/fachset-physik-1

Zur Übersicht Zum externen Weblink
Weblink

Im Fachset Physik der iMINT-Akademie Berlin wurde ein Unterrichtsmodul zum Thema „Wärme im Alltag – Energie ist immer dabei“ entwickelt. Dabei sollen die Arten der Wärmeübertragung im Kontext der Wärmeversorgung in der Schule vermittelt werden. Wesentliche Ziele sind die individuelle Förderung aller Schülerinnen und Schüler und die Berücksichtigung der Bedürfnisse der Lernenden mit geistigen oder mit emotional- bzw. sozialen Entwicklungsstörungen. Besonders im Übungsteil wird der Schwerpunkt der Kompetenzentwicklung im Bereich der Sprachbildung deutlich. Durch die Arbeit an Lernstationen erhalten die Schülerinnen und Schüler Zeit, um sich die Zusammenhänge einer relativ komplexen technischen Anlage, der Heizungsanlage ihrer Schule, zu erarbeiten. Außerdem können sie Verantwortung für die eigene Schul- und Lebenswelt übernehmen.
Dieses OER-Material und weiteres Material der iMINT-Akademie Berlin gibt es unter:
https://bildungsserver.berlin-brandenburg.de/unterricht/faecher/mathematik-naturwissenschaften/mint/i-mint-akademie/weiterfuehrende-schulen/fachset-physik-1

Zur Übersicht Zum externen Weblink

Unterschiedliche Wärmekapazitäten im Teilchenbild

Aufgabe ( Übungsaufgaben )

Kupfer hat eine spezifische Wärmekapazität von \(c_{\rm{Kuper}}=0{,}39\,\rm{\frac{J}{g\cdot {}^{\circ}C}}\), Eisen dagegen von…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Kupfer hat eine spezifische Wärmekapazität von \(c_{\rm{Kuper}}=0{,}39\,\rm{\frac{J}{g\cdot {}^{\circ}C}}\), Eisen dagegen von…

Zur Aufgabe

Vor- und Nachteile von Brennstoffzellen

Aufgabe ( Übungsaufgaben )

Lies den Artikel zur Brennstoffzelle und stelle einige Vor- und Nachteile von Brennstoffzellensystemen gegenüber konventionellen…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Lies den Artikel zur Brennstoffzelle und stelle einige Vor- und Nachteile von Brennstoffzellensystemen gegenüber konventionellen…

Zur Aufgabe

Kohlendioxidausstoß von Autos

Aufgabe ( Übungsaufgaben )

Joachim Herz Stiftung Abb. 1 Diagramm Emissionen von Kohlendioxid Joachim Herz Stiftung Abb. 2…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Joachim Herz Stiftung Abb. 1 Diagramm Emissionen von Kohlendioxid Joachim Herz Stiftung Abb. 2…

Zur Aufgabe

Zeit-Temperatur-Diagramm

Aufgabe ( Übungsaufgaben )

Durch eine Wärmequelle werden pro Minute \(20\,\rm{kJ}\) Energie geliefert. Es wird ein Eiswürfel der Masse \(m=100\,\rm{g}\) und einer…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Durch eine Wärmequelle werden pro Minute \(20\,\rm{kJ}\) Energie geliefert. Es wird ein Eiswürfel der Masse \(m=100\,\rm{g}\) und einer…

Zur Aufgabe

Allgemeines Gasgesetz

Aufgabe ( Übungsaufgaben )

a) Abb. 1 FlexonZeige, dass das allgemeine Gasgesetz das…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

a) Abb. 1 FlexonZeige, dass das allgemeine Gasgesetz das…

Zur Aufgabe

BROWNsche Bewegung

Aufgabe ( Übungsaufgaben )

Joachim Herz Stiftung Abb. 1 BROWNsche BewegungBROWN konnte im Mikroskop eine ungeordnete Bewegung von Teilchen sehen ("Mikro-Wimmeln"). In…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Joachim Herz Stiftung Abb. 1 BROWNsche BewegungBROWN konnte im Mikroskop eine ungeordnete Bewegung von Teilchen sehen ("Mikro-Wimmeln"). In…

Zur Aufgabe

Durchmischung von Flüssigkeiten

Aufgabe ( Übungsaufgaben )

Hinweis: Diese Aufgabe wurde aus den Beispielaufgaben zu den Bildungsstandards der KMK-Konferenz entnommen. In zwei Versuchen wird mit Flüssigkeiten…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Hinweis: Diese Aufgabe wurde aus den Beispielaufgaben zu den Bildungsstandards der KMK-Konferenz entnommen. In zwei Versuchen wird mit Flüssigkeiten…

Zur Aufgabe