Direkt zum Inhalt
Suchergebnisse 31 - 60 von 98

Magnetischer Fluss und Induktionsgesetz

Grundwissen

  • Der magnetische Fluss \(\Phi = B \cdot A \cdot \cos\left(\varphi\right)\) ist salopp gesagt das Maß für die "Menge an Magnetfeld, das in einer Induktionsanordnung durch die Leiterschleife fließt".
  • In einer Induktionsanordnung kann man am Spannungsmesser in der Induktionsspule immer dann eine Induktionsspannung \(U_{\rm{i}}\) beobachten, wenn sich der magnetische Fluss \(\Phi\) durch die Leiterschleife ändert.
  • Der Wert der Induktionsspannung berechnet sich durch \({U_{\rm{i}}} = - \frac{{d\Phi }}{{dt}}\) bzw. für den Fall einer Spule mit \(N\) Windungen als Leiterschleife \({U_{\rm{i}}} = - N \cdot \frac{{d\Phi }}{{dt}}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Der magnetische Fluss \(\Phi = B \cdot A \cdot \cos\left(\varphi\right)\) ist salopp gesagt das Maß für die "Menge an Magnetfeld, das in einer Induktionsanordnung durch die Leiterschleife fließt".
  • In einer Induktionsanordnung kann man am Spannungsmesser in der Induktionsspule immer dann eine Induktionsspannung \(U_{\rm{i}}\) beobachten, wenn sich der magnetische Fluss \(\Phi\) durch die Leiterschleife ändert.
  • Der Wert der Induktionsspannung berechnet sich durch \({U_{\rm{i}}} = - \frac{{d\Phi }}{{dt}}\) bzw. für den Fall einer Spule mit \(N\) Windungen als Leiterschleife \({U_{\rm{i}}} = - N \cdot \frac{{d\Phi }}{{dt}}\).

Zum Artikel Zu den Aufgaben

Magnetfeld eines geraden Leiters

Grundwissen

  • Das Magnetfeld um einen geraden Leiter verläuft in konzentrischen Kreisen um den Leiter.
  • Richtung und Stärke des Magnetfeldes werden u.a. von Stromstärke und Stromrichtung im Leiter bestimmt.
  • Die Richtung und die Orientierung des Magnetfeldes kannst du mit der Rechten-Faust-Regel ermitteln.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Das Magnetfeld um einen geraden Leiter verläuft in konzentrischen Kreisen um den Leiter.
  • Richtung und Stärke des Magnetfeldes werden u.a. von Stromstärke und Stromrichtung im Leiter bestimmt.
  • Die Richtung und die Orientierung des Magnetfeldes kannst du mit der Rechten-Faust-Regel ermitteln.

Zum Artikel Zu den Aufgaben

Bestimmung der magnetischen Kraft

Grundwissen

  • Herrscht an einem Punkt ein magnetisches Feld mit bekannter Richtung, Orientierung und bekanntem Betrag \(B\) der magnetischen Flussdichte und befindet sich an diesem Punkt ein Leiterstück der Länge \(l\), durch das ein Strom der Stärke \(I\) fließt, dann kannst du die Richtung, die Orientierung und den Betrag der magnetischen Kraft \(\vec F_{\rm{mag}}\) auf dieses Leiterstück bestimmen.
  • Die Richtung und die Orientierung der magnetischen Kraft \(\vec F_{\rm{mag}}\) auf das Leiterstück bestimmst du mit Hilfe der Drei-Finger-Regel der rechten Hand (Daumen in elektrische Stromrichtung, Zeigefinger in Magnetfeldrichtung → Mittelfinger in Kraftrichtung).
  • Den Betrag \(F_{\rm{mag}}\) der magnetischen Kraft auf das Leiterstück berechnest du mit der Formel \({F_{{\rm{mag}}}} = I \cdot l \cdot  B \cdot \sin \left( \varphi \right)\), wobei \(\varphi\) die Weite des Winkels zwischen \(\vec B\) und \(\vec I\) ist.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Herrscht an einem Punkt ein magnetisches Feld mit bekannter Richtung, Orientierung und bekanntem Betrag \(B\) der magnetischen Flussdichte und befindet sich an diesem Punkt ein Leiterstück der Länge \(l\), durch das ein Strom der Stärke \(I\) fließt, dann kannst du die Richtung, die Orientierung und den Betrag der magnetischen Kraft \(\vec F_{\rm{mag}}\) auf dieses Leiterstück bestimmen.
  • Die Richtung und die Orientierung der magnetischen Kraft \(\vec F_{\rm{mag}}\) auf das Leiterstück bestimmst du mit Hilfe der Drei-Finger-Regel der rechten Hand (Daumen in elektrische Stromrichtung, Zeigefinger in Magnetfeldrichtung → Mittelfinger in Kraftrichtung).
  • Den Betrag \(F_{\rm{mag}}\) der magnetischen Kraft auf das Leiterstück berechnest du mit der Formel \({F_{{\rm{mag}}}} = I \cdot l \cdot  B \cdot \sin \left( \varphi \right)\), wobei \(\varphi\) die Weite des Winkels zwischen \(\vec B\) und \(\vec I\) ist.

Zum Artikel Zu den Aufgaben

Energie des magnetischen Feldes

Grundwissen

  • Im Magnetfeld einer Spule ist Energie gespeichert.
  • Die magnetische Feldenergie einer Spule beträgt \({E_{\rm{mag}}}\left( t \right) = {\textstyle{1 \over 2}} \cdot L \cdot {I^2}\left( t \right)\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Im Magnetfeld einer Spule ist Energie gespeichert.
  • Die magnetische Feldenergie einer Spule beträgt \({E_{\rm{mag}}}\left( t \right) = {\textstyle{1 \over 2}} \cdot L \cdot {I^2}\left( t \right)\)

Zum Artikel Zu den Aufgaben

Ausbreitung Elektromagnetischer Wellen

Grundwissen

  • Man unterscheidet bei der Ausbreitung elektromagnetischer Wellen zwischen Nahfeld und Fernfeld.
  • Das Nahfeld ist in unmittelbarer Nähe zur Quelle/Antenne.
  • Im Fernfeld schwingen elektrisches und magnetisches Feld in Phase.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Man unterscheidet bei der Ausbreitung elektromagnetischer Wellen zwischen Nahfeld und Fernfeld.
  • Das Nahfeld ist in unmittelbarer Nähe zur Quelle/Antenne.
  • Im Fernfeld schwingen elektrisches und magnetisches Feld in Phase.

Zum Artikel Zu den Aufgaben

Geladene Teilchen im magnetischen Querfeld

Grundwissen

  • Geladene Teilchen, die in einem magnetischen Feld ruhen, erfahren keine Kraft und bleiben in Ruhe.

  • Geladenen Teilchen, die sich senkrecht zu den Feldlinien eines magnetischen Feldes bewegen, erfahren eine Kraft, die senkrecht zur Bewegungsrichtung und senkrecht zu den Feldlinien gerichtet ist und werden in Richtung dieser Kraft beschleunigt. Dabei ändert sich nur die Richtung, nicht aber der Betrag der Geschwindigkeit. Ist das magnetische Feld homogen, so bewegen sich die Teilchen dabei auf einer Kreisbahn.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Geladene Teilchen, die in einem magnetischen Feld ruhen, erfahren keine Kraft und bleiben in Ruhe.

  • Geladenen Teilchen, die sich senkrecht zu den Feldlinien eines magnetischen Feldes bewegen, erfahren eine Kraft, die senkrecht zur Bewegungsrichtung und senkrecht zu den Feldlinien gerichtet ist und werden in Richtung dieser Kraft beschleunigt. Dabei ändert sich nur die Richtung, nicht aber der Betrag der Geschwindigkeit. Ist das magnetische Feld homogen, so bewegen sich die Teilchen dabei auf einer Kreisbahn.

Zum Artikel Zu den Aufgaben

Selbstinduktion und Induktivität

Grundwissen

  • Selbstinduktion ist die Induktionswirkung eines Stromes auf seinen eigenen Leiterkreis
  • Die Induktionsspannung \(U_{\rm{i}}\) ist proportional zur Änderungsrate \(\frac{dI}{dt}\)
  • Es gilt \(U_{\rm{i}}=-L\cdot \frac{dI}{dt}\), wobei \(L\) die sog. Induktivität ist

Zum Artikel Zu den Aufgaben
Grundwissen

  • Selbstinduktion ist die Induktionswirkung eines Stromes auf seinen eigenen Leiterkreis
  • Die Induktionsspannung \(U_{\rm{i}}\) ist proportional zur Änderungsrate \(\frac{dI}{dt}\)
  • Es gilt \(U_{\rm{i}}=-L\cdot \frac{dI}{dt}\), wobei \(L\) die sog. Induktivität ist

Zum Artikel Zu den Aufgaben

Elektromagnetischer Schwingkreis ungedämpft

Grundwissen

  • Ein Schwingkreis besteht zentral aus einem Kondensator mit Kapazität \(C\), der zu Beginn mittels elektrischer Quelle auf \(U_0\) aufgeladen wird, und einer Spule der Induktivität \(L\).
  • Im ungedämpften Fall schwingt der Kreis harmonisch mit der Schwingungsdauer \(T = 2 \cdot \pi \cdot \sqrt {L \cdot C}\)
  • Die Spannung über dem Kondensator wird beschrieben durch \(U_C(t) = \left| {{U_0}} \right| \cdot \cos \left( {{\omega _0} \cdot t} \right)\quad {\rm{mit}}\quad{\omega _0} = \sqrt {\frac{1}{L \cdot C}}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ein Schwingkreis besteht zentral aus einem Kondensator mit Kapazität \(C\), der zu Beginn mittels elektrischer Quelle auf \(U_0\) aufgeladen wird, und einer Spule der Induktivität \(L\).
  • Im ungedämpften Fall schwingt der Kreis harmonisch mit der Schwingungsdauer \(T = 2 \cdot \pi \cdot \sqrt {L \cdot C}\)
  • Die Spannung über dem Kondensator wird beschrieben durch \(U_C(t) = \left| {{U_0}} \right| \cdot \cos \left( {{\omega _0} \cdot t} \right)\quad {\rm{mit}}\quad{\omega _0} = \sqrt {\frac{1}{L \cdot C}}\)

Zum Artikel Zu den Aufgaben

Magnetfeld von geraden Leitern

Grundwissen

  • Wenn durch einen geraden und sehr langen Leiter ein elektrischer Strom fließt, dann haben die Feldlinien des magnetischen Feldes die Form von Kreisen, die in Ebenen senkrecht zu dem Leiter verlaufen und ihren Mittelpunkt im Leiter haben.
  • Die Orientierung des Feldes kann man mit der ersten Rechte-Faust-Regel bestimmen.
  • Ist \(I\) die Stärke des Stroms im Leiter und \(r\) der Abstand eines Punktes zum Leiter, dann berechnet sich der Betrag der magnetischen Flussdichte \(B\) an diesem Punkt durch \(B = {\mu _0} \cdot \frac{1}{{2 \, \pi \cdot r}} \cdot I\) mit der magnetischen Feldkonstanten \(\mu_0=1{,}2566\cdot 10^{-6}\,\rm{\frac{N}{A^2}}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Wenn durch einen geraden und sehr langen Leiter ein elektrischer Strom fließt, dann haben die Feldlinien des magnetischen Feldes die Form von Kreisen, die in Ebenen senkrecht zu dem Leiter verlaufen und ihren Mittelpunkt im Leiter haben.
  • Die Orientierung des Feldes kann man mit der ersten Rechte-Faust-Regel bestimmen.
  • Ist \(I\) die Stärke des Stroms im Leiter und \(r\) der Abstand eines Punktes zum Leiter, dann berechnet sich der Betrag der magnetischen Flussdichte \(B\) an diesem Punkt durch \(B = {\mu _0} \cdot \frac{1}{{2 \, \pi \cdot r}} \cdot I\) mit der magnetischen Feldkonstanten \(\mu_0=1{,}2566\cdot 10^{-6}\,\rm{\frac{N}{A^2}}\).

Zum Artikel Zu den Aufgaben

Elektromagnetischer Schwingkreis gedämpft

Grundwissen

  • Der Widerstand der Bauteile in einem Schwingkreis führt zur Dämpfung der Schwingung.
  • Die Differentialgleichung der gedämpften elektromagnetischen Schwingung ist \(L \cdot \ddot Q + \frac{Q}{C} + R \cdot \dot Q = 0\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Der Widerstand der Bauteile in einem Schwingkreis führt zur Dämpfung der Schwingung.
  • Die Differentialgleichung der gedämpften elektromagnetischen Schwingung ist \(L \cdot \ddot Q + \frac{Q}{C} + R \cdot \dot Q = 0\).

Zum Artikel Zu den Aufgaben

Zusammenhang von Induktion und LORENTZ-Kraft

Grundwissen

  • Das Auftreten von Induktionsspannungen kann mithilfe der LORENTZ-Kraft erklärt werden
  • Ladungstrennung aufgrund von Bewegung von Ladung im Magnetfeld wird als Induktionsspannung messbar
  • Wenn sich die vom Magnetfeld durchsetzte Fläche eines Leiterrahmens ändert, wird eine Induktionsspannung messbar

Zum Artikel Zu den Aufgaben
Grundwissen

  • Das Auftreten von Induktionsspannungen kann mithilfe der LORENTZ-Kraft erklärt werden
  • Ladungstrennung aufgrund von Bewegung von Ladung im Magnetfeld wird als Induktionsspannung messbar
  • Wenn sich die vom Magnetfeld durchsetzte Fläche eines Leiterrahmens ändert, wird eine Induktionsspannung messbar

Zum Artikel Zu den Aufgaben

Magnetfeld von HELMHOLTZ-Spulen

Grundwissen

  • Als HELMHOLTZ-Spule bezeichnet man eine Anordnung von zwei kurzen Spulen mit großem Radius \(R\) und gleicher Windungszahl, die im Abstand \(R\) auf derselben Achse parallel aufgestellt und gleichsinnig von Strom durchflossen werden. In der Mittelebene der beiden Spulen entsteht ein Bereich mit weitgehend homogenem magnetischem Feld.
  • Die Orientierung des magnetischen Feldes kann man mit der zweiten Rechte-Faust-Regel bestimmen.
  • Ist \(N\) die Anzahl der Windungen und \(R\) der Radius der Spulen sowie \(I\) die Stärke des Stroms durch die Spule, dann berechnet sich der Betrag \(B\) der magnetischen Flussdichte in der Mittelebene des Spulenpaars durch \(B = {\mu _0} \cdot \frac{{8 \cdot N}}{{{{\sqrt {125} }} \cdot R}} \cdot I\) mit der magnetischen Feldkonstanten \(\mu_0=1{,}2566\cdot 10^{-6}\,\rm{\frac{N}{A^2}}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Als HELMHOLTZ-Spule bezeichnet man eine Anordnung von zwei kurzen Spulen mit großem Radius \(R\) und gleicher Windungszahl, die im Abstand \(R\) auf derselben Achse parallel aufgestellt und gleichsinnig von Strom durchflossen werden. In der Mittelebene der beiden Spulen entsteht ein Bereich mit weitgehend homogenem magnetischem Feld.
  • Die Orientierung des magnetischen Feldes kann man mit der zweiten Rechte-Faust-Regel bestimmen.
  • Ist \(N\) die Anzahl der Windungen und \(R\) der Radius der Spulen sowie \(I\) die Stärke des Stroms durch die Spule, dann berechnet sich der Betrag \(B\) der magnetischen Flussdichte in der Mittelebene des Spulenpaars durch \(B = {\mu _0} \cdot \frac{{8 \cdot N}}{{{{\sqrt {125} }} \cdot R}} \cdot I\) mit der magnetischen Feldkonstanten \(\mu_0=1{,}2566\cdot 10^{-6}\,\rm{\frac{N}{A^2}}\).

Zum Artikel Zu den Aufgaben

Elektromagnetischer Schwingkreis ungedämpft (Theorie)

Ausblick
Ausblick

Elektromagnetischer Schwingkreis schwach gedämpft - Schwingfall (Theorie)

Ausblick
Ausblick

Elektrisches Feld

Grundwissen

  • Wenn in einem Raum elektrische Kraftwirkungen auftreten, so herrscht in diesem Raum ein elektrisches Feld.
  • Ein elektrisches Feld wird durch elektrische Ladungen erzeugt. Das Feld ist Vermittler für elektrische Kräfte.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Wenn in einem Raum elektrische Kraftwirkungen auftreten, so herrscht in diesem Raum ein elektrisches Feld.
  • Ein elektrisches Feld wird durch elektrische Ladungen erzeugt. Das Feld ist Vermittler für elektrische Kräfte.

Zum Artikel Zu den Aufgaben

Induktion und LORENTZ-Kraft

Grundwissen

  • Das Auftreten von Induktionsspannungen kann mithilfe der LORENTZ-Kraft erklärt werden
  • Ändert sich die von Magnetfeld durchsetzte Fläche einer Spule, so tritt Induktion auf
  • Eine Flächenänderung kann auch durch Rotation der Spule erreicht werden

Zum Artikel Zu den Aufgaben
Grundwissen

  • Das Auftreten von Induktionsspannungen kann mithilfe der LORENTZ-Kraft erklärt werden
  • Ändert sich die von Magnetfeld durchsetzte Fläche einer Spule, so tritt Induktion auf
  • Eine Flächenänderung kann auch durch Rotation der Spule erreicht werden

Zum Artikel Zu den Aufgaben

Zyklotron

Ausblick

  • Ein Zyklotron beschleunigt Teilchen platzsparend auf spiralähnlichen Bahnen
  • Die Teilchen bewegen sich dabei senkrecht zu einem homogenen Magnetfeld
  • Durch das E-Feld einer hochfrequenten Wechselspannung zwischen den beiden Duanten werden die Teilchen beschleunigt

Zum Artikel Zu den Aufgaben
Ausblick

  • Ein Zyklotron beschleunigt Teilchen platzsparend auf spiralähnlichen Bahnen
  • Die Teilchen bewegen sich dabei senkrecht zu einem homogenen Magnetfeld
  • Durch das E-Feld einer hochfrequenten Wechselspannung zwischen den beiden Duanten werden die Teilchen beschleunigt

Zum Artikel Zu den Aufgaben

Elektromagnetischer Schwingkreis ungedämpft (Modellbildung)

Ausblick

  • Auf Basis einer geeigneten Modellierung lässt sich der ungedämpfte elektromagnetische Schwingkreis mit Hilfe der Methode der kleinen Schritte simulieren.

Zum Artikel
Ausblick

  • Auf Basis einer geeigneten Modellierung lässt sich der ungedämpfte elektromagnetische Schwingkreis mit Hilfe der Methode der kleinen Schritte simulieren.

Zum Artikel Zu den Aufgaben

Elektromagnetischer Schwingkreis gedämpft (Modellbildung)

Ausblick

  • Auf Basis einer geeigneten Modellierung lässt sich der gedämpfte elektromagnetische Schwingkreis mit Hilfe der Methode der kleinen Schritte simulieren.

Zum Artikel
Ausblick

  • Auf Basis einer geeigneten Modellierung lässt sich der gedämpfte elektromagnetische Schwingkreis mit Hilfe der Methode der kleinen Schritte simulieren.

Zum Artikel Zu den Aufgaben

Stehende elektromagnetische Welle (Simulation)

Grundwissen

  • Stehende elektromagnetische Wellen entstehen z.B. durch Überlagerung einer einlaufenden Welle mit der in der Metallplatte induzierten Welle.
  •  Der Abstand zweier benachbarter Knoten der stehenden Welle ist gleich der halben Wellenlänge der ursprünglichen, fortschreitenden Welle.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Stehende elektromagnetische Wellen entstehen z.B. durch Überlagerung einer einlaufenden Welle mit der in der Metallplatte induzierten Welle.
  •  Der Abstand zweier benachbarter Knoten der stehenden Welle ist gleich der halben Wellenlänge der ursprünglichen, fortschreitenden Welle.

Zum Artikel Zu den Aufgaben

Geladene Teilchen im magnetischen Längsfeld

Grundwissen

  • Geladene Teilchen, die in einem magnetischen Feld ruhen, erfahren keine Kraft und bleiben in Ruhe.

  • Geladene Teilchen, die sich parallel zu den Feldlinien eines magnetischen Feldes bewegen, erfahren ebenfalls keine Kraft und bewegen sich geradlinig gleichförmig weiter.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Geladene Teilchen, die in einem magnetischen Feld ruhen, erfahren keine Kraft und bleiben in Ruhe.

  • Geladene Teilchen, die sich parallel zu den Feldlinien eines magnetischen Feldes bewegen, erfahren ebenfalls keine Kraft und bewegen sich geradlinig gleichförmig weiter.

Zum Artikel Zu den Aufgaben

Elektrisches Feld und Feldliniendarstellung

Grundwissen

  • Im Raum um eine Ladung herrscht ein elektrisches Feld. Dieses elektrische Feld überträgt die Kraftwirkung dieser Ladung auf andere Ladungen.
  • Die elektrische Feldstärke ist definiert als der Quotient aus der elektrischen Kraft \({\vec F_{\rm{el}}}\) auf eine Probeladung und der Probeladung \(q\): \(\vec E = \frac{{{{\vec F}_{\rm{el}}}}}{q}\).
  • Für die elektrische Feldstärke \(\vec E\) im Raum um eine punktförmige Ladung \(Q\) gilt: Der Feldstärkevektor ist für eine positive Ladung radial von der Ladung weg und für eine negative Ladung radial zur Ladung hin orientiert, der Betrag ist umgekehrt proportional zum Quadrat des Abstands \(r\) und hat den Wert \(E = \frac{1}{4 \cdot \pi \cdot \varepsilon_0} \cdot \frac{\left|Q\right|}{r^2}\).
  • Die elektrische Feldstärke \(\vec E\) im Zwischenraum zweier entgegengesetzt geladener Platten (Flächeninhalt \(A\), Ladung \(Q\)) ist konstant (homogenes elektrisches Feld). Der Feldstärkevektor steht senkrecht zu den Plattenoberflächen, ist von der positiv zur negativ geladenen Platte orientiert und hat den Betrag \(E = \frac{1}{\varepsilon_0} \cdot \frac{\left|Q\right|}{A}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Im Raum um eine Ladung herrscht ein elektrisches Feld. Dieses elektrische Feld überträgt die Kraftwirkung dieser Ladung auf andere Ladungen.
  • Die elektrische Feldstärke ist definiert als der Quotient aus der elektrischen Kraft \({\vec F_{\rm{el}}}\) auf eine Probeladung und der Probeladung \(q\): \(\vec E = \frac{{{{\vec F}_{\rm{el}}}}}{q}\).
  • Für die elektrische Feldstärke \(\vec E\) im Raum um eine punktförmige Ladung \(Q\) gilt: Der Feldstärkevektor ist für eine positive Ladung radial von der Ladung weg und für eine negative Ladung radial zur Ladung hin orientiert, der Betrag ist umgekehrt proportional zum Quadrat des Abstands \(r\) und hat den Wert \(E = \frac{1}{4 \cdot \pi \cdot \varepsilon_0} \cdot \frac{\left|Q\right|}{r^2}\).
  • Die elektrische Feldstärke \(\vec E\) im Zwischenraum zweier entgegengesetzt geladener Platten (Flächeninhalt \(A\), Ladung \(Q\)) ist konstant (homogenes elektrisches Feld). Der Feldstärkevektor steht senkrecht zu den Plattenoberflächen, ist von der positiv zur negativ geladenen Platte orientiert und hat den Betrag \(E = \frac{1}{\varepsilon_0} \cdot \frac{\left|Q\right|}{A}\).

Zum Artikel Zu den Aufgaben