Direkt zum Inhalt
Suchergebnisse 91 - 120 von 150

Biologische Strahlenwirkung

Grundwissen

  • Man muss unterscheiden, ob die Bestrahlung von außen erfolgt oder vom Inneren des Körpers ausgeht.
  • \(\alpha\)- und \(\beta\)-Strahlung sind besonders gefährlich, wenn ihre Quellen durch Luft oder Nahrung in den Körper aufgenommen wurden.
  • Man unterscheidet stochastische und deterministische Strahlenschäden.

Zum Artikel
Grundwissen

  • Man muss unterscheiden, ob die Bestrahlung von außen erfolgt oder vom Inneren des Körpers ausgeht.
  • \(\alpha\)- und \(\beta\)-Strahlung sind besonders gefährlich, wenn ihre Quellen durch Luft oder Nahrung in den Körper aufgenommen wurden.
  • Man unterscheidet stochastische und deterministische Strahlenschäden.

Zum Artikel Zu den Aufgaben

Dosimetrie und Dosiseinheiten

Grundwissen

Zur Beschreibung der biologischen Wirkung von ionisierender Strahlung führt man den Begriff der Dosis ein. Dabei unterscheidet man verschiedene Dosisarten.

  • Die Energiedosis \(D\), die ein Körper durch ionisierende Strahlung erhält, ist der Quotient aus der von dem Körper absorbierten Strahlungsenergie \(E\) und der Masse \(m\) des Körpers: \(D=\frac{E}{m}\). Die Energiedosis ist Grundlage der Dosimetrie im Strahlenschutz.
  • Die Ionendosis \(J\), die ein Körper durch ionisierende Strahlung erhält, ist der Quotient aus der durch Ionisation in dem Körper freiwerdenen elektrischen Ladung \(Q\) gleichen Vorzeichens und der Masse \(m\) des Körpers: \(J=\frac{Q}{m}\).
  • Die Äquivalentdosis \(H\), die ein Körper durch eine Energiedosis einer bestimmten Strahlung erhält, ist das Produkt aus der Energiedosis \(D\) und dem Strahlungswichtungsfaktor \(w_{\rm{R}}\) der Strahlung: \(H=w_{\rm{R}} \cdot D\).
  • Die effektive Dosis \(E\), die ein Organ/Gewebe durch eine Äquivalentdosis erhält, ist das Produkt aus der Äquivalentdosis \(H\) und dem Gewebewichtungsfaktor \(w_{\rm{T}}\) des absorbierenden Organs/Gewebes: \(E=w_{\rm{T}} \cdot H\).

Zum Artikel Zu den Aufgaben
Grundwissen

Zur Beschreibung der biologischen Wirkung von ionisierender Strahlung führt man den Begriff der Dosis ein. Dabei unterscheidet man verschiedene Dosisarten.

  • Die Energiedosis \(D\), die ein Körper durch ionisierende Strahlung erhält, ist der Quotient aus der von dem Körper absorbierten Strahlungsenergie \(E\) und der Masse \(m\) des Körpers: \(D=\frac{E}{m}\). Die Energiedosis ist Grundlage der Dosimetrie im Strahlenschutz.
  • Die Ionendosis \(J\), die ein Körper durch ionisierende Strahlung erhält, ist der Quotient aus der durch Ionisation in dem Körper freiwerdenen elektrischen Ladung \(Q\) gleichen Vorzeichens und der Masse \(m\) des Körpers: \(J=\frac{Q}{m}\).
  • Die Äquivalentdosis \(H\), die ein Körper durch eine Energiedosis einer bestimmten Strahlung erhält, ist das Produkt aus der Energiedosis \(D\) und dem Strahlungswichtungsfaktor \(w_{\rm{R}}\) der Strahlung: \(H=w_{\rm{R}} \cdot D\).
  • Die effektive Dosis \(E\), die ein Organ/Gewebe durch eine Äquivalentdosis erhält, ist das Produkt aus der Äquivalentdosis \(H\) und dem Gewebewichtungsfaktor \(w_{\rm{T}}\) des absorbierenden Organs/Gewebes: \(E=w_{\rm{T}} \cdot H\).

Zum Artikel Zu den Aufgaben

FEYNMAN-Diagramme

Grundwissen

  • FEYNMAN-Diagramme sind schematische Zeit-Ort-Diagramme von Teilchen (nicht die Bahnkurven) und bieten eine übersichtliche Darstellung von Wechselwirkungsprozessen.
  • Oft haben die Diagramme äußere Linien, welche Materieteilchen darstellen und innere Linien, die Botenteilchen darstellen.
  • Wechselwirkungspunkte, an denen Linien zusammentreffen nennt man Vertices (Singular: Vertex).

Zum Artikel Zu den Aufgaben
Grundwissen

  • FEYNMAN-Diagramme sind schematische Zeit-Ort-Diagramme von Teilchen (nicht die Bahnkurven) und bieten eine übersichtliche Darstellung von Wechselwirkungsprozessen.
  • Oft haben die Diagramme äußere Linien, welche Materieteilchen darstellen und innere Linien, die Botenteilchen darstellen.
  • Wechselwirkungspunkte, an denen Linien zusammentreffen nennt man Vertices (Singular: Vertex).

Zum Artikel Zu den Aufgaben

Chadwick - Originalarbeit

Geschichte
Geschichte

Marie (1867 - 1934) und Pierre CURIE (1859 - 1906)

Geschichte
Geschichte

Von DEMOKRIT zu GELL-MANN

Geschichte
Geschichte

Lise MEITNER (1878 - 1968) und Fritz STRASSMANN (1902 - 1980)

Geschichte
Geschichte

Teilchenspuren (CK-12-Simulation)

Versuche

  • Teilchenspuren von verschiedenen Teilchen im Magnetfeld untersuchen.
  • Verschiedene Teilchen aufgrund ihrer Spuren im Magnetfeld unterscheiden.
  • Notwendigkeit der relativistischen Korrektur verdeutlichen.

Zum Artikel
Versuche

  • Teilchenspuren von verschiedenen Teilchen im Magnetfeld untersuchen.
  • Verschiedene Teilchen aufgrund ihrer Spuren im Magnetfeld unterscheiden.
  • Notwendigkeit der relativistischen Korrektur verdeutlichen.

Zum Artikel Zu den Aufgaben

Aufbau von Atomkernen

Grundwissen

  • Atomkerne bestehen aus Nukleonen. Dies sind entweder die elektrisch positiven Protonen und elektrische neutralen Neutronen.
  • Die Kernladungs- oder Ordnungszahl \(Z\) gibt die Zahl der Protonen in einem Atomkern an und bestimmt, um welches Element es sich handelt.
  • Jedes Element hat seine feste Kernladungszahl \(Z\), kann aber mehrere Isotope mit unterschiedlicher Neutronenzahlen \(N\) besitzen.
  • Die Nukleonen- oder Massenzahl \(A=Z+N\) gibt die (ungefähre) Masse eines Atomkerns bzw. des ganzen Atoms in der Maßeinheit \(\rm{u}\) an.
  • Zur eindeutigen Identifikation von Atomkernen nutzt man die Schreibweise\[_Z^A{\rm{X }} \buildrel \wedge \over = \;_{{\rm{Ordnungszahl}}}^{{\rm{Massenzahl}}}{\rm{Elementsymbol}},\;{\rm{alsoz}}.{\rm{B}}.\;_{\rm{6}}^{{\rm{14}}}{\rm{C}}\]

Zum Artikel Zu den Aufgaben
Grundwissen

  • Atomkerne bestehen aus Nukleonen. Dies sind entweder die elektrisch positiven Protonen und elektrische neutralen Neutronen.
  • Die Kernladungs- oder Ordnungszahl \(Z\) gibt die Zahl der Protonen in einem Atomkern an und bestimmt, um welches Element es sich handelt.
  • Jedes Element hat seine feste Kernladungszahl \(Z\), kann aber mehrere Isotope mit unterschiedlicher Neutronenzahlen \(N\) besitzen.
  • Die Nukleonen- oder Massenzahl \(A=Z+N\) gibt die (ungefähre) Masse eines Atomkerns bzw. des ganzen Atoms in der Maßeinheit \(\rm{u}\) an.
  • Zur eindeutigen Identifikation von Atomkernen nutzt man die Schreibweise\[_Z^A{\rm{X }} \buildrel \wedge \over = \;_{{\rm{Ordnungszahl}}}^{{\rm{Massenzahl}}}{\rm{Elementsymbol}},\;{\rm{alsoz}}.{\rm{B}}.\;_{\rm{6}}^{{\rm{14}}}{\rm{C}}\]

Zum Artikel Zu den Aufgaben

Nuklidkarte stabiler Kerne

Grundwissen

  • Verschiedene Atomkerne werden häufig in einer \(N\)-\(Z\)-Nuklidkarte dargestellt.
  • Unterschiedliche Elemente stehen jeweils in verschiedenen Zeilen, Isotope des gleichen Elementes jeweils in der gleichen Zeile.
  • Kleine, leichte Kerne besitzen ungefähr genau so viele Protonen wie Neutronen, bei großen, schweren Kernen ist die Zahl der Neutronen deutlich größer als die der Protonen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Verschiedene Atomkerne werden häufig in einer \(N\)-\(Z\)-Nuklidkarte dargestellt.
  • Unterschiedliche Elemente stehen jeweils in verschiedenen Zeilen, Isotope des gleichen Elementes jeweils in der gleichen Zeile.
  • Kleine, leichte Kerne besitzen ungefähr genau so viele Protonen wie Neutronen, bei großen, schweren Kernen ist die Zahl der Neutronen deutlich größer als die der Protonen.

Zum Artikel Zu den Aufgaben

Historische Vorstellungen zum Kernaufbau

Geschichte
Geschichte

Gültige Ziffern mit Zehnerpotenzen

Grundwissen

  • Manchmal ist die Angabe der Lösung mit der richtigen Anzahl der gültigen Ziffern nicht direkt möglich.
  • Die Umwandlung in eine größere Einheit ist eine Lösungsmöglichkeit.
  • Durch den Einsatz von Zehnerpotenzen kannst du die Anzahl der gültigen Ziffern immer richtig angeben.

Zum Artikel
Grundwissen

  • Manchmal ist die Angabe der Lösung mit der richtigen Anzahl der gültigen Ziffern nicht direkt möglich.
  • Die Umwandlung in eine größere Einheit ist eine Lösungsmöglichkeit.
  • Durch den Einsatz von Zehnerpotenzen kannst du die Anzahl der gültigen Ziffern immer richtig angeben.

Zum Artikel Zu den Aufgaben

Exponentialfunktionen auswerten

Grundwissen

  • Exponentialfunktionen haben die Form \(f(x)=a\cdot b^x\) bzw. mittels \(e\)-Funktion ausgedrückt \(f(x) = a \cdot e^{k \cdot x}\)
  • Aus Messwerten kannst du die zugrundeliegende Exponentialfunktion mittels exponentieller Regression ermitteln.
  • Bei Zerfallskurven, bei Absorptionskurven und bei Entladekurven von Kondensatoren handelt es sich um Exponentialfunktionen.

Zum Artikel
Grundwissen

  • Exponentialfunktionen haben die Form \(f(x)=a\cdot b^x\) bzw. mittels \(e\)-Funktion ausgedrückt \(f(x) = a \cdot e^{k \cdot x}\)
  • Aus Messwerten kannst du die zugrundeliegende Exponentialfunktion mittels exponentieller Regression ermitteln.
  • Bei Zerfallskurven, bei Absorptionskurven und bei Entladekurven von Kondensatoren handelt es sich um Exponentialfunktionen.

Zum Artikel Zu den Aufgaben

Zusammenfassen von Proportionalitäten

Grundwissen

  • Mehrere Proportionalitäten zu einer Größe kannst du zusammenfassen.
  • Sind z.B. die Größen \(a\) und \(b\) proportional zu \(y\), so ist auch \(a\cdot b\) proportional zu \(y\).
  • Umgekehrte Proportionalitäten kannst du ebenso zusammenfassen.

Zum Artikel
Grundwissen

  • Mehrere Proportionalitäten zu einer Größe kannst du zusammenfassen.
  • Sind z.B. die Größen \(a\) und \(b\) proportional zu \(y\), so ist auch \(a\cdot b\) proportional zu \(y\).
  • Umgekehrte Proportionalitäten kannst du ebenso zusammenfassen.

Zum Artikel Zu den Aufgaben

SI-Basisgrößen und -einheiten

Grundwissen
Grundwissen

Lösen von Gleichungen - Fortführung

Grundwissen
Grundwissen

Rechenaufgaben

Grundwissen

  • Bei Rechenaufgaben in der Physik hilft ein strukturiertes Vorgehen.
  • Notiere zuerst die gegebenen und gesuchten Größen und rechne jeweils in die Basiseinheit um.
  • Stelle die Formel zuerst allgemein nach der gesuchten Größe um und setze erst dann die gegebenen Größen ein.

Zum Artikel
Grundwissen

  • Bei Rechenaufgaben in der Physik hilft ein strukturiertes Vorgehen.
  • Notiere zuerst die gegebenen und gesuchten Größen und rechne jeweils in die Basiseinheit um.
  • Stelle die Formel zuerst allgemein nach der gesuchten Größe um und setze erst dann die gegebenen Größen ein.

Zum Artikel Zu den Aufgaben

Erstellen von Diagrammen

Grundwissen

  • Für ein Diagramm benötigst du zunächst zusammengehörige Messwerte zweier Größen (meist aus einem Experiment).
  • Die im Diagramm zuerst genannte Größe kommt auf die Rechtswertachse, die zweite Größe auf die Hochwertachse.
  • Durch die Messpunkte wird im Diagramm eine möglichst glatten Kurve ohne Ecken und Knicke gezeichnet, wobei nicht alle Punkte genau auf der Kurve liegen müssen (Messfehler).

Zum Artikel
Grundwissen

  • Für ein Diagramm benötigst du zunächst zusammengehörige Messwerte zweier Größen (meist aus einem Experiment).
  • Die im Diagramm zuerst genannte Größe kommt auf die Rechtswertachse, die zweite Größe auf die Hochwertachse.
  • Durch die Messpunkte wird im Diagramm eine möglichst glatten Kurve ohne Ecken und Knicke gezeichnet, wobei nicht alle Punkte genau auf der Kurve liegen müssen (Messfehler).

Zum Artikel Zu den Aufgaben

Auswerten von Diagrammen - Einführung

Grundwissen

  • Messwerte werden zur Auswertung oft in ein Diagramm eingetragen. Je nach Lage wird dann eine Ausgleichsgerade oder eine Kurve im Diagramm ergänzt.
  • Mit Hilfe der Ausgleichsgeraden oder Kurve können weitere Wertepaare im Bereich der Messwerte bestimmt (interpoliert) werden.
  • Eine Verlängerung der Ausgleichsgeraden oder Kurve deutlich über den Bereich der Messwerte hinaus ist meist nicht zulässig.

Zum Artikel
Grundwissen

  • Messwerte werden zur Auswertung oft in ein Diagramm eingetragen. Je nach Lage wird dann eine Ausgleichsgerade oder eine Kurve im Diagramm ergänzt.
  • Mit Hilfe der Ausgleichsgeraden oder Kurve können weitere Wertepaare im Bereich der Messwerte bestimmt (interpoliert) werden.
  • Eine Verlängerung der Ausgleichsgeraden oder Kurve deutlich über den Bereich der Messwerte hinaus ist meist nicht zulässig.

Zum Artikel Zu den Aufgaben

Lösen von Gleichungen - Einführung

Grundwissen
Grundwissen

Physikalische Konstanten

Grundwissen
Grundwissen

Umgekehrte Proportionalität

Grundwissen

  • Bei zwei zueinander umgekehrt proportionalen Größen gehört zum Doppelten, Dreifachen, ... n-fachen der Größe \(x\) die Hälfte, ein Drittel, ... ein n-tel der Größe \(y\).
  • Zwei zueinander umgekehrt proportionale Größen sind produktgleich. Das Produkt \(x\cdot y\) nennt man die Proportionalitätskonstante (Proportionalitätsfaktor).
  • Anstelle des Begriffs umgekehrt proportional werden auch die Begriffe antiproportional und indirekt proportional genutzt.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei zwei zueinander umgekehrt proportionalen Größen gehört zum Doppelten, Dreifachen, ... n-fachen der Größe \(x\) die Hälfte, ein Drittel, ... ein n-tel der Größe \(y\).
  • Zwei zueinander umgekehrt proportionale Größen sind produktgleich. Das Produkt \(x\cdot y\) nennt man die Proportionalitätskonstante (Proportionalitätsfaktor).
  • Anstelle des Begriffs umgekehrt proportional werden auch die Begriffe antiproportional und indirekt proportional genutzt.

Zum Artikel Zu den Aufgaben

Zehnerpotenzen - Präfixe

Grundwissen

  • Mit Zehnerpotenzen kannst du sehr große und sehr kleine Größen übersichtlich schreiben.
  • Auch mit passenden Präfixen (Vorsilben) vor der Einheit kannst du Größen übersichtlich angeben.

Zum Artikel
Grundwissen

  • Mit Zehnerpotenzen kannst du sehr große und sehr kleine Größen übersichtlich schreiben.
  • Auch mit passenden Präfixen (Vorsilben) vor der Einheit kannst du Größen übersichtlich angeben.

Zum Artikel Zu den Aufgaben

Potenzschreibweise

Grundwissen

  • Sehr große und sehr kleine Zahlen kannst du mithilfe von Zehnerpotenzen übersichtlich darstellen.
  • Beispiele: \(13000000=1{,}3\cdot 10^7\) und \(0{,}0000123=1{,}23\cdot 10^{-5}\)

Zum Artikel
Grundwissen

  • Sehr große und sehr kleine Zahlen kannst du mithilfe von Zehnerpotenzen übersichtlich darstellen.
  • Beispiele: \(13000000=1{,}3\cdot 10^7\) und \(0{,}0000123=1{,}23\cdot 10^{-5}\)

Zum Artikel Zu den Aufgaben

Direkte Proportionalität

Grundwissen

  • Bei zwei zueinander direkt proportionalen Größen gehört zum Doppelten, Dreifachen, . . . n-fachen der Größe \(x\) das Doppelte, Dreifache, . . .n-fache der Größe \(y\).
  • Zwei zueinander direkt proportionale Größen sind quotientengleich. Den Quotienten \(\frac{y}{x}\) nennt man die Proportionalitätskonstante (bzw. den Proportionalitätsfaktor).
  • Sind zwei Größen zueinander direkt proportional, so ergibt ihre Darstellung in einem Diagramm eine Halbgerade durch den Ursprung.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei zwei zueinander direkt proportionalen Größen gehört zum Doppelten, Dreifachen, . . . n-fachen der Größe \(x\) das Doppelte, Dreifache, . . .n-fache der Größe \(y\).
  • Zwei zueinander direkt proportionale Größen sind quotientengleich. Den Quotienten \(\frac{y}{x}\) nennt man die Proportionalitätskonstante (bzw. den Proportionalitätsfaktor).
  • Sind zwei Größen zueinander direkt proportional, so ergibt ihre Darstellung in einem Diagramm eine Halbgerade durch den Ursprung.

Zum Artikel Zu den Aufgaben