Direkt zum Inhalt
Suchergebnisse 121 - 150 von 376

Magnetfeld eines Stabmagneten - Wassserwannenversuch (Animation)

Download ( Animationen )

Die Animation zeigt die Darstellung von Feldlinien mithilfe einer Wasserwanne, in der eine an einem Korken montierte Stricknadel im Wasser die…

Zum Download
Download ( Animationen )

Die Animation zeigt die Darstellung von Feldlinien mithilfe einer Wasserwanne, in der eine an einem Korken montierte Stricknadel im Wasser die…

Zum Download

Teilchenbahnen in Magnetfeldern - Magnetische Flasche (Animation)

Download ( Animationen )

Die Animation zeigt die Bahnkurve eines positiv geladenen Teilchens, das in eine sogenannte magnetische Flasche eintritt.

Zum Download
Download ( Animationen )

Die Animation zeigt die Bahnkurve eines positiv geladenen Teilchens, das in eine sogenannte magnetische Flasche eintritt.

Zum Download

Berechnung des magnetischen Flusses durch einen Würfel im Magnetfeld

Aufgabe ( Übungsaufgaben )

a) Berechne den magnetischen Fluss durch den Würfel. …

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

a) Berechne den magnetischen Fluss durch den Würfel. …

Zur Aufgabe

Modell der Elementarmagnete - Entmagnetisieren eines Weicheisenstabes durch Wärme (Animation)

Download ( Animationen )

Die Animation zeigt das Entmagnetisieren eines magnetisierten Weicheisenstabes durch Energiezufuhr in Form von Wärme.

Zum Download
Download ( Animationen )

Die Animation zeigt das Entmagnetisieren eines magnetisierten Weicheisenstabes durch Energiezufuhr in Form von Wärme.

Zum Download

Modell der Elementarmagnete - Magnetisieren eines Kollektivs von Eisenfeilspänen (Animation)

Download ( Animationen )

Die Animation zeigt das Magnetisieren eines Kollektivs von Eisenfeilspänen durch Vorbeistreichen eines Permanentmagneten.

Zum Download
Download ( Animationen )

Die Animation zeigt das Magnetisieren eines Kollektivs von Eisenfeilspänen durch Vorbeistreichen eines Permanentmagneten.

Zum Download

Magnetischen Kraft und Definition der magnetischen Flussdichte mit dem Kraftsensor

Versuche

  • Erarbeitung der Formel für die magnetische Kraft auf einen stromdurchflossenen Leiter
  • Definition der magnetischen Flussdichte \(B\)

Zum Artikel
Versuche

  • Erarbeitung der Formel für die magnetische Kraft auf einen stromdurchflossenen Leiter
  • Definition der magnetischen Flussdichte \(B\)

Zum Artikel Zu den Aufgaben

Elektrisches Feld und Feldliniendarstellung

Grundwissen

  • Im Raum um eine Ladung herrscht ein elektrisches Feld. Dieses elektrische Feld überträgt die Kraftwirkung dieser Ladung auf andere Ladungen.
  • Die elektrische Feldstärke ist definiert als der Quotient aus der elektrischen Kraft \({\vec F_{\rm{el}}}\) auf eine Probeladung und der Probeladung \(q\): \(\vec E = \frac{{{{\vec F}_{\rm{el}}}}}{q}\).
  • Für die elektrische Feldstärke \(\vec E\) im Raum um eine punktförmige Ladung \(Q\) gilt: Der Feldstärkevektor ist für eine positive Ladung radial von der Ladung weg und für eine negative Ladung radial zur Ladung hin orientiert, der Betrag ist umgekehrt proportional zum Quadrat des Abstands \(r\) und hat den Wert \(E = \frac{1}{4 \cdot \pi \cdot \varepsilon_0} \cdot \frac{\left|Q\right|}{r^2}\).
  • Die elektrische Feldstärke \(\vec E\) im Zwischenraum zweier entgegengesetzt geladener Platten (Flächeninhalt \(A\), Ladung \(Q\)) ist konstant (homogenes elektrisches Feld). Der Feldstärkevektor steht senkrecht zu den Plattenoberflächen, ist von der positiv zur negativ geladenen Platte orientiert und hat den Betrag \(E = \frac{1}{\varepsilon_0} \cdot \frac{\left|Q\right|}{A}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Im Raum um eine Ladung herrscht ein elektrisches Feld. Dieses elektrische Feld überträgt die Kraftwirkung dieser Ladung auf andere Ladungen.
  • Die elektrische Feldstärke ist definiert als der Quotient aus der elektrischen Kraft \({\vec F_{\rm{el}}}\) auf eine Probeladung und der Probeladung \(q\): \(\vec E = \frac{{{{\vec F}_{\rm{el}}}}}{q}\).
  • Für die elektrische Feldstärke \(\vec E\) im Raum um eine punktförmige Ladung \(Q\) gilt: Der Feldstärkevektor ist für eine positive Ladung radial von der Ladung weg und für eine negative Ladung radial zur Ladung hin orientiert, der Betrag ist umgekehrt proportional zum Quadrat des Abstands \(r\) und hat den Wert \(E = \frac{1}{4 \cdot \pi \cdot \varepsilon_0} \cdot \frac{\left|Q\right|}{r^2}\).
  • Die elektrische Feldstärke \(\vec E\) im Zwischenraum zweier entgegengesetzt geladener Platten (Flächeninhalt \(A\), Ladung \(Q\)) ist konstant (homogenes elektrisches Feld). Der Feldstärkevektor steht senkrecht zu den Plattenoberflächen, ist von der positiv zur negativ geladenen Platte orientiert und hat den Betrag \(E = \frac{1}{\varepsilon_0} \cdot \frac{\left|Q\right|}{A}\).

Zum Artikel Zu den Aufgaben

Elektrizitätslehre

Ströme & magnetisches Feld

Zum Themenbereich
Themenbereich

Elektrische Klingel

Ausblick

  • Kern einer klassischen Klingel ist ein Elektromagnet
  • Durch clever Schaltung wird dieser abwechselnd ein- und ausgeschaltet

Zum Artikel
Ausblick

  • Kern einer klassischen Klingel ist ein Elektromagnet
  • Durch clever Schaltung wird dieser abwechselnd ein- und ausgeschaltet

Zum Artikel Zu den Aufgaben

Supraleitung und Suprafluidität

Ausblick
Ausblick

Induktion durch Änderung der magnetischen Flussdichte (Demonstrationsversuch)

Versuche

  • Nachweis einer Induktionsspannung bei zeitlicher Änderung der magnetischen Flussdichte.
  • Qualitative Bestimmung der Beziehung zwischen \(\left| {{U_{\rm{i}}}} \right|\) und der Änderungsrate \(\frac{\Delta B}{\Delta t}\).
  • Qualitative Bestimmung der Beziehung zwischen \(\left| {{U_{\rm{i}}}} \right|\) und der Querschnittsfläche \(A\) der Induktionsspule.
  • Qualitative Bestimmung der Beziehung zwischen \(\left| {{U_{\rm{i}}}} \right|\) und der Windungszahl \(N\) der Induktionsspule.

Zum Artikel
Versuche

  • Nachweis einer Induktionsspannung bei zeitlicher Änderung der magnetischen Flussdichte.
  • Qualitative Bestimmung der Beziehung zwischen \(\left| {{U_{\rm{i}}}} \right|\) und der Änderungsrate \(\frac{\Delta B}{\Delta t}\).
  • Qualitative Bestimmung der Beziehung zwischen \(\left| {{U_{\rm{i}}}} \right|\) und der Querschnittsfläche \(A\) der Induktionsspule.
  • Qualitative Bestimmung der Beziehung zwischen \(\left| {{U_{\rm{i}}}} \right|\) und der Windungszahl \(N\) der Induktionsspule.

Zum Artikel Zu den Aufgaben

Hans Christian ØRSTED (1777-1851)

Geschichte
Geschichte

Magnetfeld eines geraden stromdurchflossenen Leiters (Simulation)

Versuche
Versuche

Elektromagnetischer Schwingkreis niederfrequent

Versuche
Versuche

Fallende Magnete

Versuche

  • Auswirkungen eines Induktionsstroms veranschaulichen
  • Richtung des Induktionsstroms theoretisch ableiten

Zum Artikel
Versuche

  • Auswirkungen eines Induktionsstroms veranschaulichen
  • Richtung des Induktionsstroms theoretisch ableiten

Zum Artikel Zu den Aufgaben

Erdmagnetfeld durch Induktion

Versuche

  • Ermittlung der Horizontal- und Vertikalkomponente des Erdmagnetfeldes durch Induktion
  • Bestimmung des Inklinationswinkels der Magnetfeldlinien

Zum Artikel Zu den Aufgaben
Versuche

  • Ermittlung der Horizontal- und Vertikalkomponente des Erdmagnetfeldes durch Induktion
  • Bestimmung des Inklinationswinkels der Magnetfeldlinien

Zum Artikel Zu den Aufgaben

HALL-Effekt

Grundwissen

  • Befindet sich ein stromdurchflossener Leiter in einem homogenen Magnetfeld, dann baut sich senkrecht sowohl zur Stromfluss- als auch zur Magnetfeldrichtung über dem Leiter eine Spannung, die sogenannte HALL-Spannung \(U_{\rm{H}}\) auf.
  • Ist \(I\) die Stärke des Stroms durch den Leiter, \(B\) die magnetische Feldstärke und \(d\) die Dicke des Leiters parallel zu \(\vec B\), dann berechnet sich die HALL-Spannung durch \({U_{\rm{H}}} = {R_{\rm{H}}} \cdot \frac{{I \cdot B}}{d}\) mit der vom Material des Leiters abhängigen HALL-Konstanten \({R_{\rm{H}}}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Befindet sich ein stromdurchflossener Leiter in einem homogenen Magnetfeld, dann baut sich senkrecht sowohl zur Stromfluss- als auch zur Magnetfeldrichtung über dem Leiter eine Spannung, die sogenannte HALL-Spannung \(U_{\rm{H}}\) auf.
  • Ist \(I\) die Stärke des Stroms durch den Leiter, \(B\) die magnetische Feldstärke und \(d\) die Dicke des Leiters parallel zu \(\vec B\), dann berechnet sich die HALL-Spannung durch \({U_{\rm{H}}} = {R_{\rm{H}}} \cdot \frac{{I \cdot B}}{d}\) mit der vom Material des Leiters abhängigen HALL-Konstanten \({R_{\rm{H}}}\).

Zum Artikel Zu den Aufgaben

Größen zur Beschreibung einer (elektromagnetischen) Welle

Grundwissen

  • Amplitude \(\hat E\), Schwingungsdauer \(T\) bzw. Frequenz \(f\) und Intensität \(I\) sind zentrale Größen zur Beschreibung einer elektromagnetischen Welle.
  • Für die Wellenlänge gilt \(\lambda=\frac{c}{f}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Amplitude \(\hat E\), Schwingungsdauer \(T\) bzw. Frequenz \(f\) und Intensität \(I\) sind zentrale Größen zur Beschreibung einer elektromagnetischen Welle.
  • Für die Wellenlänge gilt \(\lambda=\frac{c}{f}\).

Zum Artikel Zu den Aufgaben

Geladene Teilchen in elektrischen und magnetischen Feldern

Grundwissen

  • Hier findest du vermischte Aufgaben zu allen Themen aus diesem Themenbereich

Zum Artikel Zu den Aufgaben
Grundwissen

  • Hier findest du vermischte Aufgaben zu allen Themen aus diesem Themenbereich

Zum Artikel Zu den Aufgaben

Geladene Teilchen im magnetischen Feld (schräger Eintritt)

Grundwissen

  • Tritt ein geladenes Teilchen schräg zu den Feldlinien in ein homogenes Magnetisches Feld ein, so durchläuft es im B-Feld eine Schraubenlinie.
  • Für den Radius der Schraubenlinie gilt \(r = \frac{{m \cdot v}}{{q \cdot B}} \cdot \sin \left( \alpha  \right)\)
  • Die Ganghöhe beträgt \(h = \frac{{2 \cdot \pi  \cdot m \cdot v}}{{q \cdot B}} \cdot \cos \left( \alpha  \right)\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Tritt ein geladenes Teilchen schräg zu den Feldlinien in ein homogenes Magnetisches Feld ein, so durchläuft es im B-Feld eine Schraubenlinie.
  • Für den Radius der Schraubenlinie gilt \(r = \frac{{m \cdot v}}{{q \cdot B}} \cdot \sin \left( \alpha  \right)\)
  • Die Ganghöhe beträgt \(h = \frac{{2 \cdot \pi  \cdot m \cdot v}}{{q \cdot B}} \cdot \cos \left( \alpha  \right)\)

Zum Artikel Zu den Aufgaben

Synchro-Zyklotron und Synchrotrone

Ausblick

  • Synchro-Zyklotrone und später Synchrotrone erhöhen die maximale Energie von Teilchenbeschleunigern im Vergleich zu einfachen Zyklotronen.
  • Beim Beschleunigen bzw. beim Ablenken muss das System mit der relativistischen Massenzunahme der Teilchen synchronisiert werden.
  • Man unterscheidet Ionen-Synchrotrone und Elektronen-Synchrotrone

Zum Artikel Zu den Aufgaben
Ausblick

  • Synchro-Zyklotrone und später Synchrotrone erhöhen die maximale Energie von Teilchenbeschleunigern im Vergleich zu einfachen Zyklotronen.
  • Beim Beschleunigen bzw. beim Ablenken muss das System mit der relativistischen Massenzunahme der Teilchen synchronisiert werden.
  • Man unterscheidet Ionen-Synchrotrone und Elektronen-Synchrotrone

Zum Artikel Zu den Aufgaben

Ferromagnetismus - Elementarmagnete (Animation)

Download ( Animationen )

Die Animation zeigt die atomare Begründung des Modells der Elementarmagnete.

Zum Download
Download ( Animationen )

Die Animation zeigt die atomare Begründung des Modells der Elementarmagnete.

Zum Download

Magnetismus-Denksport - Magnet an Eisen (Animation)

Download ( Animationen )

Die Animation zeigt das Verhalten eines Eisenstücks, dem sich ein Magnet an verschiedenen Stellen nähert.

Zum Download
Download ( Animationen )

Die Animation zeigt das Verhalten eines Eisenstücks, dem sich ein Magnet an verschiedenen Stellen nähert.

Zum Download

Magnetismus-Denksport - Magnet an Kompassnadel (Animation)

Download ( Animationen )

Die Animation zeigt das Verhalten einer Kompassnadel, der sich ein Magnet nähert.

Zum Download
Download ( Animationen )

Die Animation zeigt das Verhalten einer Kompassnadel, der sich ein Magnet nähert.

Zum Download