Direkt zum Inhalt
Suchergebnisse 31 - 60 von 196

Nachweis von Gammastrahlung

Aufgabe ( Übungsaufgaben )
Aufgabe ( Übungsaufgaben )

Radioisotopengenerator (Abitur BY 2012 Ph12-2 A1)

Aufgabe ( Übungsaufgaben )

Seit August 2012 erkundet das Roboterfahrzeug „Curiosity“ die Marsoberfläche. Das Fahrzeug ist mit einem Radioisotopengenerator ausgestattet, der die…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Seit August 2012 erkundet das Roboterfahrzeug „Curiosity“ die Marsoberfläche. Das Fahrzeug ist mit einem Radioisotopengenerator ausgestattet, der die…

Zur Aufgabe

Strahlendes Mondgestein (Abitur BY 2009 GK A4-1)

Aufgabe ( Übungsaufgaben )

Bei den Apollo-Missionen wurden von Astronauten einige Kilogramm Mondgestein zur Erde gebracht. Viele dieser Steine enthalten eine sehr kleine Menge…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Bei den Apollo-Missionen wurden von Astronauten einige Kilogramm Mondgestein zur Erde gebracht. Viele dieser Steine enthalten eine sehr kleine Menge…

Zur Aufgabe

Brout-Englert-Higgs-Mechanismus und das Higgs-Teilchen

Aufgabe ( Übungsaufgaben )

Klicke nach dem Start des Videos auf das "Untertitel"-Icon und wähle als Untertitel "Deutsch". Schaue dir das folgende Video an und versuche im…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Klicke nach dem Start des Videos auf das "Untertitel"-Icon und wähle als Untertitel "Deutsch". Schaue dir das folgende Video an und versuche im…

Zur Aufgabe

Radioaktive Leuchtfarben (Abitur BY 2016 Ph12-2 A3)

Aufgabe ( Übungsaufgaben )

Zifferblätter von Armbanduhren wurden früher mit radioaktiver Farbe bemalt, damit sie im Dunkeln leuchten. In einer solchen Farbe werden…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Zifferblätter von Armbanduhren wurden früher mit radioaktiver Farbe bemalt, damit sie im Dunkeln leuchten. In einer solchen Farbe werden…

Zur Aufgabe

Paarerzeugung

Aufgabe ( Übungsaufgaben )

HTML5-Canvas nicht unterstützt! // Paarerzeugung Animation // 12.01.2017 //…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

HTML5-Canvas nicht unterstützt! // Paarerzeugung Animation // 12.01.2017 //…

Zur Aufgabe

Altersbestimmung von Zirkonen (Abitur BY 2017 Ph12-1 A3)

Aufgabe ( Übungsaufgaben )

Zirkone sind Minerale, deren Entstehungszeitpunkt mit der Uran-Blei-Methode bestimmt werden kann. Daraus lässt sich oftmals auch das Alter des…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Zirkone sind Minerale, deren Entstehungszeitpunkt mit der Uran-Blei-Methode bestimmt werden kann. Daraus lässt sich oftmals auch das Alter des…

Zur Aufgabe

Ein historisches Experiment zur Radioaktivität (Abitur BY 2017 Ph12-1 A2)

Aufgabe ( Übungsaufgaben )

Marie und Pierre CURIE haben im Jahr 1898 bei ihren Experimenten das Element Radium entdeckt. \({}_{88}^{226}{\rm{Ra}}\) kommt in der natürlichen…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Marie und Pierre CURIE haben im Jahr 1898 bei ihren Experimenten das Element Radium entdeckt. \({}_{88}^{226}{\rm{Ra}}\) kommt in der natürlichen…

Zur Aufgabe

Positronen-Emissions-Tomographie (Abitur BY 2017 Ph12-2 A2)

Aufgabe ( Übungsaufgaben )

Die Positronen-Emissions-Tomographie ist ein medizinisches Diagnoseverfahren. Hierbei wird z. B. das Isotop \({}_{}^{18}{\rm{F}}\) (Atommasse…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Die Positronen-Emissions-Tomographie ist ein medizinisches Diagnoseverfahren. Hierbei wird z. B. das Isotop \({}_{}^{18}{\rm{F}}\) (Atommasse…

Zur Aufgabe

Massenverhältnis Kern-Hülle

Aufgabe ( Übungsaufgaben )

Berechne, welchen Prozentsatz die Masse aller Hüllenelektronen eines Uran-Atoms von der Masse eines Nukleons (Kernbaustein) darstellt.

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Berechne, welchen Prozentsatz die Masse aller Hüllenelektronen eines Uran-Atoms von der Masse eines Nukleons (Kernbaustein) darstellt.

Zur Aufgabe

Veranschaulichung der Atomgröße

Aufgabe ( Übungsaufgaben )

Joachim Herz Stiftung Abb. 1 Vergleich Atomkern und StecknadelStell dir vor, der Atomkern wäre so groß wie ein Stecknadelkopf. Schätze ab,…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Joachim Herz Stiftung Abb. 1 Vergleich Atomkern und StecknadelStell dir vor, der Atomkern wäre so groß wie ein Stecknadelkopf. Schätze ab,…

Zur Aufgabe

Dichte von Kernmaterie

Aufgabe ( Übungsaufgaben )

Für den Kernradius gilt die Näherungsformel \(r = 1{,}4 \cdot {10^{ - 15}}\,{\rm{m}} \cdot \sqrt[3]{A}\) . Dabei bedeutet \(A\) die Massezahl des…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Für den Kernradius gilt die Näherungsformel \(r = 1{,}4 \cdot {10^{ - 15}}\,{\rm{m}} \cdot \sqrt[3]{A}\) . Dabei bedeutet \(A\) die Massezahl des…

Zur Aufgabe

Altersbestimmung von Gesteinsproben (Abitur BY 2008 LK A4-2)

Aufgabe ( Übungsaufgaben )

Die Kalium-Argon-Methode ist geeignet, das Alter von Gesteinsproben zu ermitteln. Beim Zerfall von \({}^{40}{\rm{K}}\) mit der Halbwertszeit \(1{,}28…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Die Kalium-Argon-Methode ist geeignet, das Alter von Gesteinsproben zu ermitteln. Beim Zerfall von \({}^{40}{\rm{K}}\) mit der Halbwertszeit \(1{,}28…

Zur Aufgabe

Starke Ladung (Farbladung) der Elementarteilchen

Aufgabe ( Erarbeitungsaufgaben )

Die rechts abgebildeten Steckbriefe des Netzwerks Teilchenwelt zu allen Elementarteilchen (Materieteilchen und Botenteilchen) und Ideen, was man damit…

Zur Aufgabe
Aufgabe ( Erarbeitungsaufgaben )

Die rechts abgebildeten Steckbriefe des Netzwerks Teilchenwelt zu allen Elementarteilchen (Materieteilchen und Botenteilchen) und Ideen, was man damit…

Zur Aufgabe

Schwache Ladung der Elementarteilchen

Aufgabe ( Erarbeitungsaufgaben )

Die rechts abgebildeten Steckbriefe des Netzwerks Teilchenwelt zu allen Elementarteilchen (Materieteilchen und Botenteilchen) und Ideen, was man damit…

Zur Aufgabe
Aufgabe ( Erarbeitungsaufgaben )

Die rechts abgebildeten Steckbriefe des Netzwerks Teilchenwelt zu allen Elementarteilchen (Materieteilchen und Botenteilchen) und Ideen, was man damit…

Zur Aufgabe

Elektrische Ladung der Elementarteilchen

Aufgabe ( Erarbeitungsaufgaben )

  Die rechts abgebildeten Steckbriefe des Netzwerks Teilchenwelt zu allen Elementarteilchen (Materieteilchen und Botenteilchen) und Ideen, was…

Zur Aufgabe
Aufgabe ( Erarbeitungsaufgaben )

  Die rechts abgebildeten Steckbriefe des Netzwerks Teilchenwelt zu allen Elementarteilchen (Materieteilchen und Botenteilchen) und Ideen, was…

Zur Aufgabe

Systematik der Elementarteilchen

Aufgabe ( Erarbeitungsaufgaben )

  Die rechts abgebildeten Steckbriefe des Netzwerks Teilchenwelt zu allen Elementarteilchen (Materieteilchen und Botenteilchen) und Ideen, was…

Zur Aufgabe
Aufgabe ( Erarbeitungsaufgaben )

  Die rechts abgebildeten Steckbriefe des Netzwerks Teilchenwelt zu allen Elementarteilchen (Materieteilchen und Botenteilchen) und Ideen, was…

Zur Aufgabe

Symmetrie von Teilchen und Anti-Teilchen

Aufgabe ( Erarbeitungsaufgaben )

  Die rechts abgebildeten Steckbriefe des Netzwerks Teilchenwelt zu allen Elementarteilchen (Materieteilchen und Botenteilchen) und Ideen, was…

Zur Aufgabe
Aufgabe ( Erarbeitungsaufgaben )

  Die rechts abgebildeten Steckbriefe des Netzwerks Teilchenwelt zu allen Elementarteilchen (Materieteilchen und Botenteilchen) und Ideen, was…

Zur Aufgabe

Rückbau von Kernreaktoren (Abitur BY 2018 Ph12-1 A2)

Aufgabe ( Übungsaufgaben )

Der Rückbau eines Reaktordruckbehälters ist mit einer großen Strahlenbelastung für die Arbeiter verbunden, weil das Material während des Betriebs…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Der Rückbau eines Reaktordruckbehälters ist mit einer großen Strahlenbelastung für die Arbeiter verbunden, weil das Material während des Betriebs…

Zur Aufgabe

Kernkraft

Grundwissen

  • Die Kernkraft basiert auf der starken Wechselwirkung
  • Die Kernkraft sorgt bei kleinen Nukleonenabständen von etwa \(0{,}5\,\rm{fm}\) bis  \(2{,}5\,\rm{fm}\) für eine Anziehung der Nukleonen und hält somit den Atomkern zusammen.
  • Die Kernkraft ist wesentlich stärker als die Gravitationswechselwirkung oder die elektromagnetische Wechselwirkung.
  • Für den Radius eines Atomkerns gilt näherungsweise \({{r_k} = 1{,}4 \cdot {10^{ - 15}}\,\rm{m} \cdot \sqrt[3]{A}}\), wo \(A\) die Nukleonenanzahl ist.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Kernkraft basiert auf der starken Wechselwirkung
  • Die Kernkraft sorgt bei kleinen Nukleonenabständen von etwa \(0{,}5\,\rm{fm}\) bis  \(2{,}5\,\rm{fm}\) für eine Anziehung der Nukleonen und hält somit den Atomkern zusammen.
  • Die Kernkraft ist wesentlich stärker als die Gravitationswechselwirkung oder die elektromagnetische Wechselwirkung.
  • Für den Radius eines Atomkerns gilt näherungsweise \({{r_k} = 1{,}4 \cdot {10^{ - 15}}\,\rm{m} \cdot \sqrt[3]{A}}\), wo \(A\) die Nukleonenanzahl ist.

Zum Artikel Zu den Aufgaben

Kettenreaktion

Grundwissen

  • Da bei der Spaltung von U‑235 durch Neutronenbeschuss mehrere Neutronen entstehen, ist eine Kettenreaktion möglich.
  • Die bei einer Kernspaltung entstehenden schnellen Neutronen müssen jedoch durch einen Moderator (z.B. Wasser) zu thermischen Neutronen abgebremst werden, damit diese wieder wahrscheinlich genug Urankerne spalten.
  • Um eine Kettenreaktion aufrecht erhalten zu können, ist eine kritische Masse an Spaltmaterial nötig.
  • Eine Kettenreaktion wird z.B. mit Steuerstäben reguliert, die die Zahl der freien Neutronen reduzieren.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Da bei der Spaltung von U‑235 durch Neutronenbeschuss mehrere Neutronen entstehen, ist eine Kettenreaktion möglich.
  • Die bei einer Kernspaltung entstehenden schnellen Neutronen müssen jedoch durch einen Moderator (z.B. Wasser) zu thermischen Neutronen abgebremst werden, damit diese wieder wahrscheinlich genug Urankerne spalten.
  • Um eine Kettenreaktion aufrecht erhalten zu können, ist eine kritische Masse an Spaltmaterial nötig.
  • Eine Kettenreaktion wird z.B. mit Steuerstäben reguliert, die die Zahl der freien Neutronen reduzieren.

Zum Artikel Zu den Aufgaben

Energiebilanz beim Beta-Plus-Zerfall

Grundwissen

  • Beim Beta-Plus-Zerfall wandelt sich im Mutterkern \(\rm{X}\) ein Proton in ein Neutron um. Gleichzeitig wird ein \(\beta^+\)-Teilchen (Positron) und ein Elektron-Neutrino \(\nu_{\rm{e}}\) emittiert. Die Ordnungszahl des Tochterkerns \(\rm{Y}\) ist um \(1\) kleiner als die des Mutterkerns, die Massenzahl bleibt gleich.
  • Die Reaktionsgleichung lautet \(_Z^A{\rm{X}}\to\;_{Z-1}^A{\rm{Y}} +\;_{1}^0{\rm{e^+}}+\;_0^0{\nu_{\rm{e}}}\)
  • Der \(Q\)-Wert berechnet sich mit Atommassen durch \(Q=\left[ m_{\rm{A}}\left( \rm{X} \right)-m_{\rm{A}}\left( \rm{Y} \right)-2 \cdot m_{\rm{e}}\right] \cdot c^2\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Beim Beta-Plus-Zerfall wandelt sich im Mutterkern \(\rm{X}\) ein Proton in ein Neutron um. Gleichzeitig wird ein \(\beta^+\)-Teilchen (Positron) und ein Elektron-Neutrino \(\nu_{\rm{e}}\) emittiert. Die Ordnungszahl des Tochterkerns \(\rm{Y}\) ist um \(1\) kleiner als die des Mutterkerns, die Massenzahl bleibt gleich.
  • Die Reaktionsgleichung lautet \(_Z^A{\rm{X}}\to\;_{Z-1}^A{\rm{Y}} +\;_{1}^0{\rm{e^+}}+\;_0^0{\nu_{\rm{e}}}\)
  • Der \(Q\)-Wert berechnet sich mit Atommassen durch \(Q=\left[ m_{\rm{A}}\left( \rm{X} \right)-m_{\rm{A}}\left( \rm{Y} \right)-2 \cdot m_{\rm{e}}\right] \cdot c^2\)

Zum Artikel Zu den Aufgaben

Energiebilanz beim EC-Prozess oder K-Einfang

Grundwissen

  • Beim EC-Prozess oder K-Einfang wandelt sich im Mutterkern \(\rm{X}\) ein Proton zusammen mit einem Elektron (meist aus der K-Schale) in ein Neutron um. Gleichzeitig wird ein Elektron-Neutrino \(\nu_{\rm{e}}\) emittiert. Die Ordnungszahl des Tochterkerns \(\rm{Y}\) ist um \(1\) kleiner als die des Mutterkerns, die Massenzahl bleibt gleich.
  • Die Reaktionsgleichung lautet \(_Z^A{\rm{X}} +\;_{-1}^0{\rm{e^-}} \to\;_{Z-1}^A{\rm{Y}} +\;_0^0{\nu_{\rm{e}}}\)
  • Der \(Q\)-Wert berechnet sich mit Atommassen durch \(Q=\left[ m_{\rm{A}}\left( \rm{X} \right)-m_{\rm{A}}\left( \rm{Y} \right)\right] \cdot c^2\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Beim EC-Prozess oder K-Einfang wandelt sich im Mutterkern \(\rm{X}\) ein Proton zusammen mit einem Elektron (meist aus der K-Schale) in ein Neutron um. Gleichzeitig wird ein Elektron-Neutrino \(\nu_{\rm{e}}\) emittiert. Die Ordnungszahl des Tochterkerns \(\rm{Y}\) ist um \(1\) kleiner als die des Mutterkerns, die Massenzahl bleibt gleich.
  • Die Reaktionsgleichung lautet \(_Z^A{\rm{X}} +\;_{-1}^0{\rm{e^-}} \to\;_{Z-1}^A{\rm{Y}} +\;_0^0{\nu_{\rm{e}}}\)
  • Der \(Q\)-Wert berechnet sich mit Atommassen durch \(Q=\left[ m_{\rm{A}}\left( \rm{X} \right)-m_{\rm{A}}\left( \rm{Y} \right)\right] \cdot c^2\)

Zum Artikel Zu den Aufgaben

Kurzer Überblick: Was ist Teilchenphysik?

Grundwissen

  • Teilchenphysik ist ein relativ junger Teilbereich der Physik
  • Teilchenphysik beschäftigt sich mit den elementaren Bausteinen der Materie, den sog. Elementarteilchen.
  • Teilchenphysik untersucht, wie die Elementarteilchen miteinander wechselwirken.

Zum Artikel
Grundwissen

  • Teilchenphysik ist ein relativ junger Teilbereich der Physik
  • Teilchenphysik beschäftigt sich mit den elementaren Bausteinen der Materie, den sog. Elementarteilchen.
  • Teilchenphysik untersucht, wie die Elementarteilchen miteinander wechselwirken.

Zum Artikel Zu den Aufgaben

Symmetrien und Erhaltungssätze

Grundwissen

  • Bei jeder Umwandlung von Teilchen oder jedem Wechselwirkungsprozess sind die elektrische, die starke Ladung und meistens auch die schwache Ladung erhalten.
  • Es gibt bei der schwachen Ladung nur wenige Ausnahmen, die alle mit dem Higgs-Teilchen oder Higgs-Feld zu tun haben.
  • Den Zusammenhang zwischen Erhaltungsgrößen und Symmetrien beschreibt das NOETHER-Theorem.

Zum Artikel
Grundwissen

  • Bei jeder Umwandlung von Teilchen oder jedem Wechselwirkungsprozess sind die elektrische, die starke Ladung und meistens auch die schwache Ladung erhalten.
  • Es gibt bei der schwachen Ladung nur wenige Ausnahmen, die alle mit dem Higgs-Teilchen oder Higgs-Feld zu tun haben.
  • Den Zusammenhang zwischen Erhaltungsgrößen und Symmetrien beschreibt das NOETHER-Theorem.

Zum Artikel Zu den Aufgaben

Das Standardmodell der Teilchenphysik

Grundwissen

  • Das Standardmodell der Teilchenphysik ist die aktuelle Theorie zur Beschreibung von subatomaren Vorgängen.
  • Das Standardmodell basiert auf Symmetrien, sog. lokalen Eichsymmetrien, die die Flexibilität der Natur gut beschreiben.

Zum Artikel
Grundwissen

  • Das Standardmodell der Teilchenphysik ist die aktuelle Theorie zur Beschreibung von subatomaren Vorgängen.
  • Das Standardmodell basiert auf Symmetrien, sog. lokalen Eichsymmetrien, die die Flexibilität der Natur gut beschreiben.

Zum Artikel Zu den Aufgaben

Die vier fundamentalen Wechselwirkungen

Grundwissen

  • Die vier fundamentalen Wechselwirkungen sind die starke Wechselwirkung, die schwache Wechselwirkung, die elektromagnetische Wechselwirkung und die Gravitation.
  • Für das Standardmodell spielt die Gravitation zunächst keine zentrale Rolle.
  • Zu jeder Wechselwirkung gehört eine eigene Ladung, deren Wert angibt, wie sensitiv ein Teilchen für diese Wechselwirkung ist.

Zum Artikel
Grundwissen

  • Die vier fundamentalen Wechselwirkungen sind die starke Wechselwirkung, die schwache Wechselwirkung, die elektromagnetische Wechselwirkung und die Gravitation.
  • Für das Standardmodell spielt die Gravitation zunächst keine zentrale Rolle.
  • Zu jeder Wechselwirkung gehört eine eigene Ladung, deren Wert angibt, wie sensitiv ein Teilchen für diese Wechselwirkung ist.

Zum Artikel Zu den Aufgaben

Elementarteilchen

Grundwissen

  • Die Elementarteilchen der Materie können gut in 3 Spalten, als Generationen bezeichnet, und 3 Zeilen eingeteilt werden.
  • Teilchen der 1. Generation sich up- und down-Quark, Elektron und Elektron-Neutrino und somit die Teilchen, die mit denen man normal in Berührung kommt. Die Teilchen der 2. und 3. Generation treten nur unter extremen Bedingungen auf.
  • Die elektrisch neutralen Leptonen in der ersten Reihe unterliegen nur der schwachen Wechselwirkung, geladene Leptonen in der zweiten Reihe auch der elektromagnetischen Wechselwirkung und Quarks in der dritten Reihe auch der starken Wechselwirkung.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Elementarteilchen der Materie können gut in 3 Spalten, als Generationen bezeichnet, und 3 Zeilen eingeteilt werden.
  • Teilchen der 1. Generation sich up- und down-Quark, Elektron und Elektron-Neutrino und somit die Teilchen, die mit denen man normal in Berührung kommt. Die Teilchen der 2. und 3. Generation treten nur unter extremen Bedingungen auf.
  • Die elektrisch neutralen Leptonen in der ersten Reihe unterliegen nur der schwachen Wechselwirkung, geladene Leptonen in der zweiten Reihe auch der elektromagnetischen Wechselwirkung und Quarks in der dritten Reihe auch der starken Wechselwirkung.

Zum Artikel Zu den Aufgaben

Altersbestimmung mit der Radiocarbonmethode

Grundwissen

  • C‑14 ist ein natürliches radioaktives Kohlenstoffisotop, dass in jedem lebenden Organismus einen festen Anteil an allen Kohlenstoffisotopen hat.
  • Stirbt ein Organismus ab, so nimmt ab diesem Zeitpunkt der C‑14-Anteil entsprechend des Zerfallsgesetzes ab \(T_{1/2}\left(\text{C-14}\right)=5730\,\rm{a}\).
  • Aus dem verbleibenden C‑14-Anteil bzw. der entsprechenden Aktivität kann mit \(t = \frac{{\ln \left( {\frac{{N(t)}}{{N\left( 0 \right)}}} \right) \cdot {T_{1/2}}}}{{ - \ln (2)}}\)  das Alter der Probe berechnet werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • C‑14 ist ein natürliches radioaktives Kohlenstoffisotop, dass in jedem lebenden Organismus einen festen Anteil an allen Kohlenstoffisotopen hat.
  • Stirbt ein Organismus ab, so nimmt ab diesem Zeitpunkt der C‑14-Anteil entsprechend des Zerfallsgesetzes ab \(T_{1/2}\left(\text{C-14}\right)=5730\,\rm{a}\).
  • Aus dem verbleibenden C‑14-Anteil bzw. der entsprechenden Aktivität kann mit \(t = \frac{{\ln \left( {\frac{{N(t)}}{{N\left( 0 \right)}}} \right) \cdot {T_{1/2}}}}{{ - \ln (2)}}\)  das Alter der Probe berechnet werden.

Zum Artikel Zu den Aufgaben

GEIGER-MÜLLER-Zählrohr

Grundwissen

  • Ein Geiger-Müller-Zählrohr (umgangssprachlich häufig Geigerzähler genannt) ist ein robustes Nachweisgerät für ionisierende Strahlung.
  • Mit Geiger-Müller-Zählrohren können \(\alpha\)- und \(\beta\)-Strahlung besonders gut nachgewiesen werden, \(\gamma\)-Strahlung wird jedoch nur zu einem kleinen Teil registriert.
  • Ein Geiger-Müller-Zählrohr wird meist an einen Digitalzähler oder einen Lautsprecher angeschlossen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ein Geiger-Müller-Zählrohr (umgangssprachlich häufig Geigerzähler genannt) ist ein robustes Nachweisgerät für ionisierende Strahlung.
  • Mit Geiger-Müller-Zählrohren können \(\alpha\)- und \(\beta\)-Strahlung besonders gut nachgewiesen werden, \(\gamma\)-Strahlung wird jedoch nur zu einem kleinen Teil registriert.
  • Ein Geiger-Müller-Zählrohr wird meist an einen Digitalzähler oder einen Lautsprecher angeschlossen.

Zum Artikel Zu den Aufgaben