Direkt zum Inhalt
Suchergebnisse 121 - 150 von 702

Entladen eines Kondensators (Theorie)

Ausblick

  • Der zeitliche Verlauf der Ladung auf einem Kondensator der Kapazität \(C\) beim Entladen über einen Widerstand der Größe \(R\) wird beschrieben durch die homogene Differentialgleichung 1. Ordnung \(\dot Q(t) + \frac{1}{{R \cdot C}} \cdot Q(t) = 0\) mit \(Q(0{\rm{s}}) = C \cdot \left| {{U_0}} \right|\).
  • Diese Differentialgleichung wird gelöst durch die Funktion \(Q(t) = C \cdot \left| {{U_0}} \right| \cdot e^{ - \frac{1}{R \cdot C} \cdot t}\). Die Ladung auf dem Kondensator fällt also während des Entladevorgangs exponentiell ab.
  • Für die Halbwertszeit gilt \({t_{\rm{H}}} = R \cdot C \cdot \ln \left( 2 \right)\).

Zum Artikel
Ausblick

  • Der zeitliche Verlauf der Ladung auf einem Kondensator der Kapazität \(C\) beim Entladen über einen Widerstand der Größe \(R\) wird beschrieben durch die homogene Differentialgleichung 1. Ordnung \(\dot Q(t) + \frac{1}{{R \cdot C}} \cdot Q(t) = 0\) mit \(Q(0{\rm{s}}) = C \cdot \left| {{U_0}} \right|\).
  • Diese Differentialgleichung wird gelöst durch die Funktion \(Q(t) = C \cdot \left| {{U_0}} \right| \cdot e^{ - \frac{1}{R \cdot C} \cdot t}\). Die Ladung auf dem Kondensator fällt also während des Entladevorgangs exponentiell ab.
  • Für die Halbwertszeit gilt \({t_{\rm{H}}} = R \cdot C \cdot \ln \left( 2 \right)\).

Zum Artikel Zu den Aufgaben

Elektrostatische Beschleuniger

Ausblick

  • Im Van-de-Graaf-Beschleuniger sorgt ein mechanisch angetriebenes isolierendes Endlosband für die Beschleunigungsspannung.
  • Im Tandembeschleuniger wird die Spannung eines Van-de-Graaf-Beschleunigers durch Umladung zweimal ausgenutzt.

Zum Artikel
Ausblick

  • Im Van-de-Graaf-Beschleuniger sorgt ein mechanisch angetriebenes isolierendes Endlosband für die Beschleunigungsspannung.
  • Im Tandembeschleuniger wird die Spannung eines Van-de-Graaf-Beschleunigers durch Umladung zweimal ausgenutzt.

Zum Artikel Zu den Aufgaben

Linearbeschleuniger

Ausblick

  • Die Teilchen bewegen sich geradlinig durch wechselnd geladene Driftröhren, in den Zwischenräumen werden sie beschleunigt.
  • Zum Laden der Driftröhren wird eine Wechselspannung mit fester Frequenz genutzt, daher müssen die Driftröhren immer länger werden.
  • Anwendung finden Linearbeschleuniger z.B. bei der Tumorbestrahlung

Zum Artikel
Ausblick

  • Die Teilchen bewegen sich geradlinig durch wechselnd geladene Driftröhren, in den Zwischenräumen werden sie beschleunigt.
  • Zum Laden der Driftröhren wird eine Wechselspannung mit fester Frequenz genutzt, daher müssen die Driftröhren immer länger werden.
  • Anwendung finden Linearbeschleuniger z.B. bei der Tumorbestrahlung

Zum Artikel Zu den Aufgaben

Zyklotron

Ausblick

  • Ein Zyklotron beschleunigt Teilchen platzsparend auf spiralähnlichen Bahnen
  • Die Teilchen bewegen sich dabei senkrecht zu einem homogenen Magnetfeld
  • Durch das E-Feld einer hochfrequenten Wechselspannung zwischen den beiden Duanten werden die Teilchen beschleunigt

Zum Artikel Zu den Aufgaben
Ausblick

  • Ein Zyklotron beschleunigt Teilchen platzsparend auf spiralähnlichen Bahnen
  • Die Teilchen bewegen sich dabei senkrecht zu einem homogenen Magnetfeld
  • Durch das E-Feld einer hochfrequenten Wechselspannung zwischen den beiden Duanten werden die Teilchen beschleunigt

Zum Artikel Zu den Aufgaben

Synchro-Zyklotron und Synchrotrone

Ausblick

  • Synchro-Zyklotrone und später Synchrotrone erhöhen die maximale Energie von Teilchenbeschleunigern im Vergleich zu einfachen Zyklotronen.
  • Beim Beschleunigen bzw. beim Ablenken muss das System mit der relativistischen Massenzunahme der Teilchen synchronisiert werden.
  • Man unterscheidet Ionen-Synchrotrone und Elektronen-Synchrotrone

Zum Artikel Zu den Aufgaben
Ausblick

  • Synchro-Zyklotrone und später Synchrotrone erhöhen die maximale Energie von Teilchenbeschleunigern im Vergleich zu einfachen Zyklotronen.
  • Beim Beschleunigen bzw. beim Ablenken muss das System mit der relativistischen Massenzunahme der Teilchen synchronisiert werden.
  • Man unterscheidet Ionen-Synchrotrone und Elektronen-Synchrotrone

Zum Artikel Zu den Aufgaben

Flächenladungsdichte

Ausblick

  • Die Flächenladungsdichte ist das Verhältnis aus Ladung und Fläche \(\sigma = \frac{Q}{A}\).
  • Die Flächenladungsdichte ist eng mit der Stärke des E-Feldes verknüpft: \({\sigma  = {\varepsilon _0} \cdot E}\)
  • Die Zusammenhänge gelten auch für gekrümmte Oberflächen wie Kugelschalen.

Zum Artikel
Ausblick

  • Die Flächenladungsdichte ist das Verhältnis aus Ladung und Fläche \(\sigma = \frac{Q}{A}\).
  • Die Flächenladungsdichte ist eng mit der Stärke des E-Feldes verknüpft: \({\sigma  = {\varepsilon _0} \cdot E}\)
  • Die Zusammenhänge gelten auch für gekrümmte Oberflächen wie Kugelschalen.

Zum Artikel Zu den Aufgaben

Strahlenbelastung durch Höhenstrahlung

Ausblick
Ausblick

Strahlenbelastung durch terrestrische Strahlung

Ausblick
Ausblick

Strahlenbelastung durch medizinische Anwendungen

Ausblick
Ausblick

Elektromagnetischer Schwingkreis schwach gedämpft - Schwingfall (Theorie)

Ausblick
Ausblick

Schwingungsdämpfung durch Wirbelströme

Ausblick
Ausblick

Funktionsprinzip von Leuchtstofflampen

Ausblick

  • In Leuchtstofflampen sorgt keine Glühwendel für Licht sondern Quecksilberatome werden zum Leuchten angeregt.
  • Quecksilber emittiert zum großen Teil UV-Licht, dass durch einen speziellen Leuchtstoff in sichtbares Licht umgewandelt wird.
  • Leuchtstofflampen können auch durch starke externe Felder zum Leuchten angeregt werden.

Zum Artikel
Ausblick

  • In Leuchtstofflampen sorgt keine Glühwendel für Licht sondern Quecksilberatome werden zum Leuchten angeregt.
  • Quecksilber emittiert zum großen Teil UV-Licht, dass durch einen speziellen Leuchtstoff in sichtbares Licht umgewandelt wird.
  • Leuchtstofflampen können auch durch starke externe Felder zum Leuchten angeregt werden.

Zum Artikel Zu den Aufgaben

Elektromagnetischer Schwingkreis ungedämpft (Theorie)

Ausblick
Ausblick

Zyklotron (Simulation MintApps)

Download ( Simulation )

Wir danken Herrn Thomas Kippenberg für die Erlaubnis, diese Simulation auf LEIFIphysik zu nutzen. Der Code steht unter GNU GPLv3 /…

Zum Download
Download ( Simulation )

Wir danken Herrn Thomas Kippenberg für die Erlaubnis, diese Simulation auf LEIFIphysik zu nutzen. Der Code steht unter GNU GPLv3 /…

Zum Download

Synchro-Zyklotron (Simulation MintApps)

Download ( Simulation )

Wir danken Herrn Thomas Kippenberg für die Erlaubnis, diese Simulation auf LEIFIphysik zu nutzen. Der Code steht unter GNU GPLv3 /…

Zum Download
Download ( Simulation )

Wir danken Herrn Thomas Kippenberg für die Erlaubnis, diese Simulation auf LEIFIphysik zu nutzen. Der Code steht unter GNU GPLv3 /…

Zum Download

Induktion - Änderung Magnetfeld Feldspule (Simulation)

Download ( Simulation )

Die Simulation zeigt das Auftreten einer Induktionsspannung bei der Änderung des B-Feldes der Feldspule.

Zum Download
Download ( Simulation )

Die Simulation zeigt das Auftreten einer Induktionsspannung bei der Änderung des B-Feldes der Feldspule.

Zum Download

Elektronengasdruckmodell am Reifen

Download ( Simulation )
Download ( Simulation )

Elektrische Kraft im homogenen elektrischen Feld (Simulation)

Download ( Simulation )

Die Simulation ermöglicht die Untersuchung der Abhängigkeit der Kraft auf eine Ladung im homogenen elektrischen Feld von den relevanten Parametern.

Zum Download
Download ( Simulation )

Die Simulation ermöglicht die Untersuchung der Abhängigkeit der Kraft auf eine Ladung im homogenen elektrischen Feld von den relevanten Parametern.

Zum Download

Elektrische Kraft im radialsymmetrischen elektrischen Feld (Simulation)

Download ( Simulation )

Die Simulation ermöglicht die Untersuchung der Abhängigkeit der Kraft auf eine Ladung im radialsymmetrischen elektrischen Feld von den relevanten…

Zum Download
Download ( Simulation )

Die Simulation ermöglicht die Untersuchung der Abhängigkeit der Kraft auf eine Ladung im radialsymmetrischen elektrischen Feld von den relevanten…

Zum Download