Direkt zum Inhalt
Suchergebnisse 361 - 390 von 1571

Elektrisches Feld im Plattenkondensator

Versuche
Versuche

Potentialmessung mit der Flammensonde

Versuche
Versuche

Modulation und Demodulation beim Schwingkreis

Versuche
Versuche

Idealer Transformator (Simulation)

Versuche
Versuche

Reibung (Simulation von PhET)

Versuche
Versuche

Statische Elektrizität (Simulation von PhET)

Versuche
Versuche

Atomaufbau (Simulation von PhET)

Versuche
Versuche

Ladungen und Felder (Simulation von PhET)

Versuche
Versuche

Energieskatepark (1) (Simulation von PhET)

Versuche
Versuche

Elektromagnetische Induktion (Simulation von PhET)

Versuche
Versuche

Kräfte und Bewegung (1) (Simulation von PhET)

Versuche
Versuche

HOOKEsches Gesetz (Simulation von PhET)

Versuche
Versuche

John Travoltage (Simulation von PhET)

Versuche
Versuche

Resonanzabsorption und Resonanzfluoreszenz bei Molekülen (Simulation von PhET)

Versuche

  • Darstellung der quantenhaften Absorption von Photonen durch Moleküle
  • Darstellung der unterschiedlichen Anregungsformen der Moleküle bis hin zur Ionisation
  • Darstellung der Übereinstimmung der Energie der absorbierten und der emittierten Photonen

Zum Artikel
Versuche

  • Darstellung der quantenhaften Absorption von Photonen durch Moleküle
  • Darstellung der unterschiedlichen Anregungsformen der Moleküle bis hin zur Ionisation
  • Darstellung der Übereinstimmung der Energie der absorbierten und der emittierten Photonen

Zum Artikel Zu den Aufgaben

RUTHERFORD-Streuung (Simulation von PhET)

Versuche
Versuche

Schweredruck (Simulation von PhET)

Versuche
Versuche

Seilwelle (Simulation von PhET)

Versuche
Versuche

Ölfleckversuch (Schülerexperiment)

Versuche
Versuche

Feder-Schwere-Pendel (Smartphone-Experiment mit phyphox)

Versuche

Mit deinem Smartphone kannst du im Unterricht oder zu Hause die Bewegung eines Feder-Schwere-Pendels untersuchen. Die App auf deinem Smartphone bestimmt dabei die Periodendauer \(T\) bzw. die Frequenz \(f\) des Feder-Schwere-Pendels. So kannst du untersuchen, ob und wie die Periodendauer von

  • der Anfangsauslenkung \(y_0\)
  • der Federkonstante (Federhärte) \(D\)
  • der Masse \(m\) des Pendelkörpers

und eventuell noch anderen Größen abhängt.

Zum Artikel
Versuche

Mit deinem Smartphone kannst du im Unterricht oder zu Hause die Bewegung eines Feder-Schwere-Pendels untersuchen. Die App auf deinem Smartphone bestimmt dabei die Periodendauer \(T\) bzw. die Frequenz \(f\) des Feder-Schwere-Pendels. So kannst du untersuchen, ob und wie die Periodendauer von

  • der Anfangsauslenkung \(y_0\)
  • der Federkonstante (Federhärte) \(D\)
  • der Masse \(m\) des Pendelkörpers

und eventuell noch anderen Größen abhängt.

Zum Artikel Zu den Aufgaben

Stroboskopaufnahme eines freien Falls

Versuche
Versuche

Glimmlampen

Versuche

  • Nachweis, dass Glimmlampen zur Feststellung der Ladungsart geeignet sind.
  • Verdeutlichung der Unterschiede von Glimm- und Glühlampen.

Zum Artikel
Versuche

  • Nachweis, dass Glimmlampen zur Feststellung der Ladungsart geeignet sind.
  • Verdeutlichung der Unterschiede von Glimm- und Glühlampen.

Zum Artikel Zu den Aufgaben

Fallende Magnete

Versuche

  • Auswirkungen eines Induktionsstroms veranschaulichen
  • Richtung des Induktionsstroms theoretisch ableiten

Zum Artikel
Versuche

  • Auswirkungen eines Induktionsstroms veranschaulichen
  • Richtung des Induktionsstroms theoretisch ableiten

Zum Artikel Zu den Aufgaben

Kapazität des Plattenkondensators

Versuche

  • Bestimmung der Einflussfaktoren auf die Kapazität \(C\) eines Plattenkondensators.
  • Quantitative Herleitung der allgemeinen Formel \(C={\varepsilon _0} \cdot {\varepsilon _r} \cdot \frac{A}{d}\).

Zum Artikel
Versuche

  • Bestimmung der Einflussfaktoren auf die Kapazität \(C\) eines Plattenkondensators.
  • Quantitative Herleitung der allgemeinen Formel \(C={\varepsilon _0} \cdot {\varepsilon _r} \cdot \frac{A}{d}\).

Zum Artikel Zu den Aufgaben

Feder-Schwere-Pendel für Fortgeschrittene (Smartphone-Experiment mit phyphox)

Versuche

Mit deinem Smartphone kannst du im Unterricht oder zu Hause den Zusammenhang \(T = 2 \cdot \pi \cdot \sqrt {\frac{m}{D}} \) zwischen der Schwingungsdauer \(T\), der Masse \(m\) des Pendelkörpers und der Federkonstanten \(D\) eines Federpendels experimentell bestätigen. Die App auf deinem Smartphone bestimmt dabei die Schwingungsdauer \(T\) bzw. die Frequenz \(f\).

Zum Artikel
Versuche

Mit deinem Smartphone kannst du im Unterricht oder zu Hause den Zusammenhang \(T = 2 \cdot \pi \cdot \sqrt {\frac{m}{D}} \) zwischen der Schwingungsdauer \(T\), der Masse \(m\) des Pendelkörpers und der Federkonstanten \(D\) eines Federpendels experimentell bestätigen. Die App auf deinem Smartphone bestimmt dabei die Schwingungsdauer \(T\) bzw. die Frequenz \(f\).

Zum Artikel Zu den Aufgaben