Direkt zum Inhalt
Suchergebnisse 61 - 90 von 198

Zusammenhang von Atom- und Kernmassen

Grundwissen

  • Die Atommasse \(m_{\rm{A}}\) unterscheidet sich von der Kernmasse \(m_{\rm{K}}\) um die Summe der Ruhemassen der im Atom gebundenen Elektronen und um die Bindungsenergie der Elektronen in der Atomhülle.
  • Die gesamte Elektronenbindungsenergie wird abgeschätzt mit \(B_{\rm{e}} = 15{,}73\,\rm{eV} \cdot Z^{\textstyle{7 \over 3}}\)
  • Oft reicht die näherungsweise Berechnung der Kernmasse mittels \(m_{\rm{K}}\left( \rm{X} \right) \approx m_{\rm{A}}\left( \rm{X} \right) - Z \cdot m_{\rm{e}}\)

Zum Artikel
Grundwissen

  • Die Atommasse \(m_{\rm{A}}\) unterscheidet sich von der Kernmasse \(m_{\rm{K}}\) um die Summe der Ruhemassen der im Atom gebundenen Elektronen und um die Bindungsenergie der Elektronen in der Atomhülle.
  • Die gesamte Elektronenbindungsenergie wird abgeschätzt mit \(B_{\rm{e}} = 15{,}73\,\rm{eV} \cdot Z^{\textstyle{7 \over 3}}\)
  • Oft reicht die näherungsweise Berechnung der Kernmasse mittels \(m_{\rm{K}}\left( \rm{X} \right) \approx m_{\rm{A}}\left( \rm{X} \right) - Z \cdot m_{\rm{e}}\)

Zum Artikel Zu den Aufgaben

Altersbestimmung mit der Radiocarbonmethode

Grundwissen

  • C‑14 ist ein natürliches radioaktives Kohlenstoffisotop, dass in jedem lebenden Organismus einen festen Anteil an allen Kohlenstoffisotopen hat.
  • Stirbt ein Organismus ab, so nimmt ab diesem Zeitpunkt der C‑14-Anteil entsprechend des Zerfallsgesetzes ab \(T_{1/2}\left(\text{C-14}\right)=5730\,\rm{a}\).
  • Aus dem verbleibenden C‑14-Anteil bzw. der entsprechenden Aktivität kann mit \(t = \frac{{\ln \left( {\frac{{N(t)}}{{N\left( 0 \right)}}} \right) \cdot {T_{1/2}}}}{{ - \ln (2)}}\)  das Alter der Probe berechnet werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • C‑14 ist ein natürliches radioaktives Kohlenstoffisotop, dass in jedem lebenden Organismus einen festen Anteil an allen Kohlenstoffisotopen hat.
  • Stirbt ein Organismus ab, so nimmt ab diesem Zeitpunkt der C‑14-Anteil entsprechend des Zerfallsgesetzes ab \(T_{1/2}\left(\text{C-14}\right)=5730\,\rm{a}\).
  • Aus dem verbleibenden C‑14-Anteil bzw. der entsprechenden Aktivität kann mit \(t = \frac{{\ln \left( {\frac{{N(t)}}{{N\left( 0 \right)}}} \right) \cdot {T_{1/2}}}}{{ - \ln (2)}}\)  das Alter der Probe berechnet werden.

Zum Artikel Zu den Aufgaben

Elektrische Stromstärke

Grundwissen

  • Die elektrische Stromstärke, Symbol \(I\), ist ein Maß für die elektrische Ladung, die pro Sekunde durch einen Leiterquerschnitt hindurchfließt.
  • Die Einheit der elektrischen Stromstärke ist das Ampere, Symbol \(\rm{A}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die elektrische Stromstärke, Symbol \(I\), ist ein Maß für die elektrische Ladung, die pro Sekunde durch einen Leiterquerschnitt hindurchfließt.
  • Die Einheit der elektrischen Stromstärke ist das Ampere, Symbol \(\rm{A}\).

Zum Artikel Zu den Aufgaben

Volumen- und Längenänderung von Festkörpern

Grundwissen

  • Festkörper dehnen sich beim Erwärmen i.d.R. in alle Raumrichtung gleichmäßig aus.
  • Bei Festkörpern gibt man oft den Längenausdehnungskoeffizienten \(\alpha\) an.
  • Für die Längenänderung gilt \(\Delta l = \alpha \cdot {l_0} \cdot \Delta \vartheta\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Festkörper dehnen sich beim Erwärmen i.d.R. in alle Raumrichtung gleichmäßig aus.
  • Bei Festkörpern gibt man oft den Längenausdehnungskoeffizienten \(\alpha\) an.
  • Für die Längenänderung gilt \(\Delta l = \alpha \cdot {l_0} \cdot \Delta \vartheta\).

Zum Artikel Zu den Aufgaben

Generator- und Motorprinzip

Grundwissen

  • Die Funktionsweise von Generatoren und Elektromotoren sind physikalisch eng verbunden
  • Zentral ist bei beiden die Lorentzkraft auf bewegte Ladungen im Magnetfeld

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Funktionsweise von Generatoren und Elektromotoren sind physikalisch eng verbunden
  • Zentral ist bei beiden die Lorentzkraft auf bewegte Ladungen im Magnetfeld

Zum Artikel Zu den Aufgaben

Viertakt-Ottomotor

Grundwissen

  • Die 4 Takte sind: Ansaugen, Verdichten, Arbeiten, Auspuffen
  • Mehrere Zylinder eines Motors laufen versetzt. Ziel ist, dass immer ein Zylinder gerade im Arbeitstakt ist.
  • Der Wirkungsgrad eines Ottomotors liegt im Idealfall bei \(\eta=35\,\%\), meist jedoch deutlich darunter.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die 4 Takte sind: Ansaugen, Verdichten, Arbeiten, Auspuffen
  • Mehrere Zylinder eines Motors laufen versetzt. Ziel ist, dass immer ein Zylinder gerade im Arbeitstakt ist.
  • Der Wirkungsgrad eines Ottomotors liegt im Idealfall bei \(\eta=35\,\%\), meist jedoch deutlich darunter.

Zum Artikel Zu den Aufgaben

Herleitung der Wellenfunktion

Grundwissen

  • Die Wellenfunktion beschreibt die Ausbreitung einer Welle mathematisch.
  • Für eine in positive \(x\)-Richtung laufende Welle gilt: \(y(x;t) = \hat y \cdot \sin \left( {2\pi  \cdot \left( {\frac{t}{T} - \frac{x}{\lambda }} \right)} \right)\)

Zum Artikel
Grundwissen

  • Die Wellenfunktion beschreibt die Ausbreitung einer Welle mathematisch.
  • Für eine in positive \(x\)-Richtung laufende Welle gilt: \(y(x;t) = \hat y \cdot \sin \left( {2\pi  \cdot \left( {\frac{t}{T} - \frac{x}{\lambda }} \right)} \right)\)

Zum Artikel Zu den Aufgaben

KIRCHHOFFsche Gesetze für Fortgeschrittene

Grundwissen

  • Die Knotenregel kann auch bei beliebig vielen zu- und abfließenden Strömen genutzt werden.
  • Die Maschenregel gilt auch bei mehreren Quellen in einem Stromkreis.
  • So lassen sich auch Ströme und Spannungen in sehr komplexen Schaltungen berechnen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Knotenregel kann auch bei beliebig vielen zu- und abfließenden Strömen genutzt werden.
  • Die Maschenregel gilt auch bei mehreren Quellen in einem Stromkreis.
  • So lassen sich auch Ströme und Spannungen in sehr komplexen Schaltungen berechnen.

Zum Artikel Zu den Aufgaben

GEIGER-MÜLLER-Zählrohr

Grundwissen

  • Ein Geiger-Müller-Zählrohr (umgangssprachlich häufig Geigerzähler genannt) ist ein robustes Nachweisgerät für ionisierende Strahlung.
  • Mit Geiger-Müller-Zählrohren können \(\alpha\)- und \(\beta\)-Strahlung besonders gut nachgewiesen werden, \(\gamma\)-Strahlung wird jedoch nur zu einem kleinen Teil registriert.
  • Ein Geiger-Müller-Zählrohr wird meist an einen Digitalzähler oder einen Lautsprecher angeschlossen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ein Geiger-Müller-Zählrohr (umgangssprachlich häufig Geigerzähler genannt) ist ein robustes Nachweisgerät für ionisierende Strahlung.
  • Mit Geiger-Müller-Zählrohren können \(\alpha\)- und \(\beta\)-Strahlung besonders gut nachgewiesen werden, \(\gamma\)-Strahlung wird jedoch nur zu einem kleinen Teil registriert.
  • Ein Geiger-Müller-Zählrohr wird meist an einen Digitalzähler oder einen Lautsprecher angeschlossen.

Zum Artikel Zu den Aufgaben

Tröpfchenmodell des Atomkerns

Grundwissen

  • Das Tröpfchenmodell geht von einer konstanten Materiedichte im Kern ähnlich wie bei einen Flüssigkeitstropfen aus.
  • Die Ruhemasse eines Kerns kann mit \({m_{{\rm{K}}{\rm{,0}}}} = Z \cdot {m_{p,0}} + N \cdot {m_{n,0}} - \frac{B}{{{c^2}}}\) berechnet werden, wobei \(B\) die Bindungsenergie ist.
  • Die Bindungsenergie setzt sich unter anderem aus der Volumenenergie, der Oberflächenenergie und der Coulomb-Energie zusammen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Das Tröpfchenmodell geht von einer konstanten Materiedichte im Kern ähnlich wie bei einen Flüssigkeitstropfen aus.
  • Die Ruhemasse eines Kerns kann mit \({m_{{\rm{K}}{\rm{,0}}}} = Z \cdot {m_{p,0}} + N \cdot {m_{n,0}} - \frac{B}{{{c^2}}}\) berechnet werden, wobei \(B\) die Bindungsenergie ist.
  • Die Bindungsenergie setzt sich unter anderem aus der Volumenenergie, der Oberflächenenergie und der Coulomb-Energie zusammen.

Zum Artikel Zu den Aufgaben

Massendefekt und Bindungsenergie

Grundwissen

  • Die Masse eines Atomkerns ist immer kleiner als die Summe der Masse der Nukleonen, aus denen er besteht. Die Differenz dieser Massen bezeichnet man als Massendefekt oder Massenverlust \(\Delta m\).
  • Beim "Zusammenbau" eines Atomkerns aus einzelnen Nukleonen wird immer Energie frei. Diese freiwerdende Energie bezeichnet man als Bindungsenergie \(B\).
  • Massendefekt und Bindungsenergie hängen nach EINSTEINs Masse-Energie-Beziehung durch \(B=\Delta m \cdot c^2\) zusammen.
  • Als Bindungsenergie pro Nukleon bezeichnet man den Wert \(\frac{B}{A}\).
  • Das Nickel-Isotop \(\rm{Ni}-62\) besitzt die größte Bindungsenergie pro Nukleon.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Masse eines Atomkerns ist immer kleiner als die Summe der Masse der Nukleonen, aus denen er besteht. Die Differenz dieser Massen bezeichnet man als Massendefekt oder Massenverlust \(\Delta m\).
  • Beim "Zusammenbau" eines Atomkerns aus einzelnen Nukleonen wird immer Energie frei. Diese freiwerdende Energie bezeichnet man als Bindungsenergie \(B\).
  • Massendefekt und Bindungsenergie hängen nach EINSTEINs Masse-Energie-Beziehung durch \(B=\Delta m \cdot c^2\) zusammen.
  • Als Bindungsenergie pro Nukleon bezeichnet man den Wert \(\frac{B}{A}\).
  • Das Nickel-Isotop \(\rm{Ni}-62\) besitzt die größte Bindungsenergie pro Nukleon.

Zum Artikel Zu den Aufgaben

Vom Stromkreis zum Schaltplan

Grundwissen

  • Auf Fotos sind nicht alle Elemente einer elektrischen Schaltung gut und klar zu erkennen.
  • Ein Schaltplan ist eine vereinfachte Darstellung einer elektrischen Schaltung.
  • Die verschiedenen Schaltsymbole für die Bauteile sind in einer Norm festgelegt.
  • Schaltpläne können auch am Computer erstellt werden

Zum Artikel Zu den Aufgaben
Grundwissen

  • Auf Fotos sind nicht alle Elemente einer elektrischen Schaltung gut und klar zu erkennen.
  • Ein Schaltplan ist eine vereinfachte Darstellung einer elektrischen Schaltung.
  • Die verschiedenen Schaltsymbole für die Bauteile sind in einer Norm festgelegt.
  • Schaltpläne können auch am Computer erstellt werden

Zum Artikel Zu den Aufgaben

Stromkreismodelle

Grundwissen

  • Mit Hilfe verschiedener Modelle kannst du dir die Abläufe im Stromkreis vorstellen und erklären.
  • Du kannst dir einen Stromkreis wie einen offenen Wasserkreislauf vorstellen.
  • Du kannst dir einen Stromkreis wie eine Fahrradkette, die ein Rad antreibt, vorstellen.
  • Du kannst dir einen Stromkreis mit Hilfe von Luftdruck und Elektronengasdruck vorstellen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Mit Hilfe verschiedener Modelle kannst du dir die Abläufe im Stromkreis vorstellen und erklären.
  • Du kannst dir einen Stromkreis wie einen offenen Wasserkreislauf vorstellen.
  • Du kannst dir einen Stromkreis wie eine Fahrradkette, die ein Rad antreibt, vorstellen.
  • Du kannst dir einen Stromkreis mit Hilfe von Luftdruck und Elektronengasdruck vorstellen.

Zum Artikel Zu den Aufgaben

Eigenschaften von Permanentmagneten

Grundwissen

  • Permanentmagnete besitzen zwei unterschiedliche Pole: einen Nordpol und einen Südpol.
  • Gleichartige Pole stoßen sich ab, ungleichartige Pole ziehen sich an.
  • Zerbrichst du einen Stabmagnet, so entstehen zwei Magnete, von denen wieder jeder Magnet einen Nordpol und einen Südpol hat.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Permanentmagnete besitzen zwei unterschiedliche Pole: einen Nordpol und einen Südpol.
  • Gleichartige Pole stoßen sich ab, ungleichartige Pole ziehen sich an.
  • Zerbrichst du einen Stabmagnet, so entstehen zwei Magnete, von denen wieder jeder Magnet einen Nordpol und einen Südpol hat.

Zum Artikel Zu den Aufgaben

Magnetische Influenz

Grundwissen

  • Wenn du einen Magneten Nahe an einen zuvor nicht magnetischen Eisenstab bringst, wird dieser zu einem Magneten - diesen Vorgang nennt  man magnetische Influenz.
  • Die im Eisen enthaltenen Elementarmagnete richten sich dabei aus.
  • Magnetische Influenz tritt bei ferromagnetischen Stoffen wie Eisen, Kobalt, Nickel auf.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Wenn du einen Magneten Nahe an einen zuvor nicht magnetischen Eisenstab bringst, wird dieser zu einem Magneten - diesen Vorgang nennt  man magnetische Influenz.
  • Die im Eisen enthaltenen Elementarmagnete richten sich dabei aus.
  • Magnetische Influenz tritt bei ferromagnetischen Stoffen wie Eisen, Kobalt, Nickel auf.

Zum Artikel Zu den Aufgaben

Elektrische Größen

Grundwissen

  • Jeder physikalischen Größe wird ein Formelzeichen (Symbol) zugeordnet.
  • Die Angabe einer physikalischen Größe erfolgt mit Maßzahl und Maßeinheit.
  • Der elektrische Strom hat das Symbol \(I\), die Spannung das Symbol \(U\) und der Widerstand das Symbol \(R\). 

Zum Artikel Zu den Aufgaben
Grundwissen

  • Jeder physikalischen Größe wird ein Formelzeichen (Symbol) zugeordnet.
  • Die Angabe einer physikalischen Größe erfolgt mit Maßzahl und Maßeinheit.
  • Der elektrische Strom hat das Symbol \(I\), die Spannung das Symbol \(U\) und der Widerstand das Symbol \(R\). 

Zum Artikel Zu den Aufgaben

Von Ladung zum elektrischen Strom

Grundwissen

  • Werden fortlaufend elektrische Ladungen transportiert, so fließt ein elektrischer Strom.
  • Je mehr Ladungen pro Zeiteinheit durch eine gedachte Testfläche in einem Leiter fließen, desto größer ist die Stromstärke \(I\) im Leiter.
  • Es gilt \({\text{Stromstärke}}=\frac{{{\text{Ladung durch Testfläche}}}}{{{\rm{Messzeit}}}}\), also \(I=\frac{\Delta Q}{\Delta t}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Werden fortlaufend elektrische Ladungen transportiert, so fließt ein elektrischer Strom.
  • Je mehr Ladungen pro Zeiteinheit durch eine gedachte Testfläche in einem Leiter fließen, desto größer ist die Stromstärke \(I\) im Leiter.
  • Es gilt \({\text{Stromstärke}}=\frac{{{\text{Ladung durch Testfläche}}}}{{{\rm{Messzeit}}}}\), also \(I=\frac{\Delta Q}{\Delta t}\)

Zum Artikel Zu den Aufgaben

Elektrische Spannung

Grundwissen

  • Als Spannung bezeichnet man die Fähigkeit einer elektrischen Quelle, in einem Stromkreis einen Strom aufrechtzuerhalten.
  • Im Modell des offenen Wasserkreislaufs entspricht die Spannung dem Höhenunterschied der Vorratsbehälter.
  • Die elektrische Spannung hat das Formelzeichen \(U\) und wird in der Einheit \([U]=1\,\rm{V}\) (Volt) angegeben.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Als Spannung bezeichnet man die Fähigkeit einer elektrischen Quelle, in einem Stromkreis einen Strom aufrechtzuerhalten.
  • Im Modell des offenen Wasserkreislaufs entspricht die Spannung dem Höhenunterschied der Vorratsbehälter.
  • Die elektrische Spannung hat das Formelzeichen \(U\) und wird in der Einheit \([U]=1\,\rm{V}\) (Volt) angegeben.

Zum Artikel Zu den Aufgaben

Elektrische Spannung und Energie

Grundwissen

  • Elektrische Spannung kann gut in Analogie mit dem offenen Wasserkreislauf verstanden werden.
  • Die Spannung einer elektrischen Quelle ist der Quotient aus der potentiellen Energie einer Ladung und dem Ladungsbetrag: \(U = \frac{{{E_{pot}}}}{Q}\)

Zum Artikel
Grundwissen

  • Elektrische Spannung kann gut in Analogie mit dem offenen Wasserkreislauf verstanden werden.
  • Die Spannung einer elektrischen Quelle ist der Quotient aus der potentiellen Energie einer Ladung und dem Ladungsbetrag: \(U = \frac{{{E_{pot}}}}{Q}\)

Zum Artikel Zu den Aufgaben

Berechnung von Schaltungen

Grundwissen

  • Bei Berechnungen an komplexeren Schaltkreisen schrittweise arbeiten.
  • Zunächst jeweils Ersatzwiderstände von parallelen Ästen berechnen, sodass eine Reihenschaltung entsteht.
  • Anschließend den Gesamtwiderstand der Schaltung berechnen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei Berechnungen an komplexeren Schaltkreisen schrittweise arbeiten.
  • Zunächst jeweils Ersatzwiderstände von parallelen Ästen berechnen, sodass eine Reihenschaltung entsteht.
  • Anschließend den Gesamtwiderstand der Schaltung berechnen.

Zum Artikel Zu den Aufgaben

KIRCHHOFFsche Gesetze

Grundwissen

  • Knotenregel: In jedem Verzweigungspunkt sind hin- und abfließende Ströme gleich, es gilt \(I_{\rm{hin}}=I_{\rm{ab}}\).
  • Maschenregel: Die Summe aller Teilspannungen ist gleich der Spannung der Quelle, es gilt \(U = U_1+U_2+...+U_n\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Knotenregel: In jedem Verzweigungspunkt sind hin- und abfließende Ströme gleich, es gilt \(I_{\rm{hin}}=I_{\rm{ab}}\).
  • Maschenregel: Die Summe aller Teilspannungen ist gleich der Spannung der Quelle, es gilt \(U = U_1+U_2+...+U_n\).

Zum Artikel Zu den Aufgaben

Reihenschaltung von Widerständen

Grundwissen

  • Für den Gesamtwiderstand \(R_{12}\) zweier in Reihe geschalteter Widerstände \(R_1\) und \(R_2\) gilt: \(R_{12}=R_1 + R_2\)
  •  Der Gesamtwiderstands einer Reihenschaltung ist stets größer als der größte Einzelwiderstand.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Für den Gesamtwiderstand \(R_{12}\) zweier in Reihe geschalteter Widerstände \(R_1\) und \(R_2\) gilt: \(R_{12}=R_1 + R_2\)
  •  Der Gesamtwiderstands einer Reihenschaltung ist stets größer als der größte Einzelwiderstand.

Zum Artikel Zu den Aufgaben

Elektrische Arbeit und Leistung

Grundwissen

  • Die elektrische Arbeit berechnest du mittels \(W_{\rm{el}}=U\cdot I\cdot t\)
  • Typische Einheiten sind \(1\,\rm{J}\) (Joule) oder \(1\,\rm{kWh}\) (Kilowattstunde)
  • Für die elektrische Leistung gilt \(P_{\rm{el}}=U\cdot I = I^2\cdot R\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die elektrische Arbeit berechnest du mittels \(W_{\rm{el}}=U\cdot I\cdot t\)
  • Typische Einheiten sind \(1\,\rm{J}\) (Joule) oder \(1\,\rm{kWh}\) (Kilowattstunde)
  • Für die elektrische Leistung gilt \(P_{\rm{el}}=U\cdot I = I^2\cdot R\)

Zum Artikel Zu den Aufgaben

Elektrisches Feld

Grundwissen

  • Wenn in einem Raum elektrische Kraftwirkungen auftreten, so herrscht in diesem Raum ein elektrisches Feld.
  • Ein elektrisches Feld wird durch elektrische Ladungen erzeugt. Das Feld ist Vermittler für elektrische Kräfte.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Wenn in einem Raum elektrische Kraftwirkungen auftreten, so herrscht in diesem Raum ein elektrisches Feld.
  • Ein elektrisches Feld wird durch elektrische Ladungen erzeugt. Das Feld ist Vermittler für elektrische Kräfte.

Zum Artikel Zu den Aufgaben

Energie des magnetischen Feldes

Grundwissen

  • Im Magnetfeld einer Spule ist Energie gespeichert.
  • Die magnetische Feldenergie einer Spule beträgt \({E_{\rm{mag}}}\left( t \right) = {\textstyle{1 \over 2}} \cdot L \cdot {I^2}\left( t \right)\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Im Magnetfeld einer Spule ist Energie gespeichert.
  • Die magnetische Feldenergie einer Spule beträgt \({E_{\rm{mag}}}\left( t \right) = {\textstyle{1 \over 2}} \cdot L \cdot {I^2}\left( t \right)\)

Zum Artikel Zu den Aufgaben

LORENTZ-Kraft

Grundwissen

  • Bewegen sich Ladungsträger senkrecht oder schräg zu einem Magnetfeld, so wirkt eine Lorentzkraft auf die Ladungsträger.
  • Die Kraftrichtung kann mit der Drei-Finger-Regel bestimmt werden.
  • Die Lorentzkraft wirkt auch auf freie Ladungsträger.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bewegen sich Ladungsträger senkrecht oder schräg zu einem Magnetfeld, so wirkt eine Lorentzkraft auf die Ladungsträger.
  • Die Kraftrichtung kann mit der Drei-Finger-Regel bestimmt werden.
  • Die Lorentzkraft wirkt auch auf freie Ladungsträger.

Zum Artikel Zu den Aufgaben

Geladene Teilchen im magnetischen Feld (schräger Eintritt)

Grundwissen

  • Tritt ein geladenes Teilchen schräg zu den Feldlinien in ein homogenes Magnetisches Feld ein, so durchläuft es im B-Feld eine Schraubenlinie.
  • Für den Radius der Schraubenlinie gilt \(r = \frac{{m \cdot v}}{{q \cdot B}} \cdot \sin \left( \alpha  \right)\)
  • Die Ganghöhe beträgt \(h = \frac{{2 \cdot \pi  \cdot m \cdot v}}{{q \cdot B}} \cdot \cos \left( \alpha  \right)\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Tritt ein geladenes Teilchen schräg zu den Feldlinien in ein homogenes Magnetisches Feld ein, so durchläuft es im B-Feld eine Schraubenlinie.
  • Für den Radius der Schraubenlinie gilt \(r = \frac{{m \cdot v}}{{q \cdot B}} \cdot \sin \left( \alpha  \right)\)
  • Die Ganghöhe beträgt \(h = \frac{{2 \cdot \pi  \cdot m \cdot v}}{{q \cdot B}} \cdot \cos \left( \alpha  \right)\)

Zum Artikel Zu den Aufgaben

Selbstinduktion und Induktivität

Grundwissen

  • Selbstinduktion ist die Induktionswirkung eines Stromes auf seinen eigenen Leiterkreis
  • Die Induktionsspannung \(U_{\rm{i}}\) ist proportional zur Änderungsrate \(\frac{dI}{dt}\)
  • Es gilt \(U_{\rm{i}}=-L\cdot \frac{dI}{dt}\), wobei \(L\) die sog. Induktivität ist

Zum Artikel Zu den Aufgaben
Grundwissen

  • Selbstinduktion ist die Induktionswirkung eines Stromes auf seinen eigenen Leiterkreis
  • Die Induktionsspannung \(U_{\rm{i}}\) ist proportional zur Änderungsrate \(\frac{dI}{dt}\)
  • Es gilt \(U_{\rm{i}}=-L\cdot \frac{dI}{dt}\), wobei \(L\) die sog. Induktivität ist

Zum Artikel Zu den Aufgaben

Transformator

Grundwissen

  • Transformatoren arbeiten i.d.R. immer mit Wechselspannungen und basieren auf Induktion.
  • Transformatoren besitzen eine Primär- und eine Sekundärseite.
  • Man unterscheidet zwischen unbelastetem und belastetem Transformator.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Transformatoren arbeiten i.d.R. immer mit Wechselspannungen und basieren auf Induktion.
  • Transformatoren besitzen eine Primär- und eine Sekundärseite.
  • Man unterscheidet zwischen unbelastetem und belastetem Transformator.

Zum Artikel Zu den Aufgaben

Energieübertragung durch Hochspannung

Grundwissen

Zum Transport von elektrischer Energie über große Entfernungen werden Hochspannungsleitung genutzt. 

Durch den Nutzen hoher Spannungen kann der in den Leitung fließende Strom klein gehalten werden.

Hohe Spannungen reduzieren die Verlustleistung auf dem Transportweg.

Zum Artikel Zu den Aufgaben
Grundwissen

Zum Transport von elektrischer Energie über große Entfernungen werden Hochspannungsleitung genutzt. 

Durch den Nutzen hoher Spannungen kann der in den Leitung fließende Strom klein gehalten werden.

Hohe Spannungen reduzieren die Verlustleistung auf dem Transportweg.

Zum Artikel Zu den Aufgaben