Direkt zum Inhalt
Suchergebnisse 61 - 90 von 160

COMPTON-Effekt

Grundwissen

Joachim Herz Stiftung
  • Der COMPTON-Effekt bezeichnet die Vergrößerung der Wellenlänge \(\lambda\) eines Photons bei der Streuung an einem Teilchen wie bspw. einem Elektron.
  • Die Zunahme der Wellenlänge \(\Delta\lambda\) bei einem Streuwinkel von \(\vartheta\) lässt sich berechnen mittels \[\Delta\lambda =\frac{h}{m_{0}\cdot c} (1-\cos\left(\vartheta\right))= \lambda_{\rm{C}} \cdot (1-\cos\left(\vartheta\right)).\]
  • Die COMPTON-Wellenlänge \(\lambda_{\rm{C}}\) für Elektronen ist \[\lambda_{\rm{C,e}} =\frac{h}{m_{e}\cdot c} = 2{,}43\cdot 10^{-12}\,\rm{m}.\]

Zum Artikel Zu den Aufgaben
Grundwissen

Joachim Herz Stiftung
  • Der COMPTON-Effekt bezeichnet die Vergrößerung der Wellenlänge \(\lambda\) eines Photons bei der Streuung an einem Teilchen wie bspw. einem Elektron.
  • Die Zunahme der Wellenlänge \(\Delta\lambda\) bei einem Streuwinkel von \(\vartheta\) lässt sich berechnen mittels \[\Delta\lambda =\frac{h}{m_{0}\cdot c} (1-\cos\left(\vartheta\right))= \lambda_{\rm{C}} \cdot (1-\cos\left(\vartheta\right)).\]
  • Die COMPTON-Wellenlänge \(\lambda_{\rm{C}}\) für Elektronen ist \[\lambda_{\rm{C,e}} =\frac{h}{m_{e}\cdot c} = 2{,}43\cdot 10^{-12}\,\rm{m}.\]

Zum Artikel Zu den Aufgaben

Kraftwärmekopplung

Grundwissen
Grundwissen

Gigantische RYDBERG-Moleküle - Von der Theorie zum Experiment

Grundwissen
Grundwissen

Moleküle in Action - Drehbuch für einen Film der Extreme

Grundwissen
Grundwissen

Das Zusammenspiel von Kosmischer Inflation und String-Theorie

Grundwissen
Grundwissen

Ein Gespräch über Quantenphysik

Grundwissen
Grundwissen

Die Heisenbergsche Unbestimmtheitsrelation

Grundwissen

  • Man kann den Ort und den Impuls von Quantenobjekten gleichzeitig nicht beliebig genau bestimmen.
  • Das Produkt aus Orts- und Impulsunbestimmtheit kann nicht beliebig klein werden. Es gilt \(\Delta x \cdot \Delta {p_x} \ge \frac{h}{{4\pi }}\)
  • Damit sind auch klassische Bahnvorstellungen von Teilchen nicht mehr möglich.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Man kann den Ort und den Impuls von Quantenobjekten gleichzeitig nicht beliebig genau bestimmen.
  • Das Produkt aus Orts- und Impulsunbestimmtheit kann nicht beliebig klein werden. Es gilt \(\Delta x \cdot \Delta {p_x} \ge \frac{h}{{4\pi }}\)
  • Damit sind auch klassische Bahnvorstellungen von Teilchen nicht mehr möglich.

Zum Artikel Zu den Aufgaben

Charakteristische Strahlung

Grundwissen

  • Im kontinuierlichen RÖNTGEN-Spektrum können charakteristische Linien identifiziert werden, die sog. charakteristische Strahlung.
  • Ursache sind Übergänge von Elektronen zwischen spezifischen energetischen Elektronenschalen (K-Schale, L-Schale, M-Schale,...).
  • Die Kα-Linie ist in charakteristischen Spektren besonders stark ausgeprägt und die Lage der Linie im kontinuierlichen Spektrum stoffspezifisch.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Im kontinuierlichen RÖNTGEN-Spektrum können charakteristische Linien identifiziert werden, die sog. charakteristische Strahlung.
  • Ursache sind Übergänge von Elektronen zwischen spezifischen energetischen Elektronenschalen (K-Schale, L-Schale, M-Schale,...).
  • Die Kα-Linie ist in charakteristischen Spektren besonders stark ausgeprägt und die Lage der Linie im kontinuierlichen Spektrum stoffspezifisch.

Zum Artikel Zu den Aufgaben

Energiezustände von Atomen

Grundwissen

  • Atome können nur Zustände mit ganz bestimmten, diskreten Energiezuständen annehmen.
  • Entsprechend haben die von einem Atom ausgesendeten Photonen jeweils genau die Energie, die zwischen zwei solchen diskreten Energieniveaus des Atoms liegt.
  • Um ein Atom anzuregen, benötigt es ebenfalls exakt einen solchen "passenden" Energiebetrag.
  • Das Auftreten von Linienspektren kann durch diskrete Energieniveaus erklärt werden.

Zum Artikel
Grundwissen

  • Atome können nur Zustände mit ganz bestimmten, diskreten Energiezuständen annehmen.
  • Entsprechend haben die von einem Atom ausgesendeten Photonen jeweils genau die Energie, die zwischen zwei solchen diskreten Energieniveaus des Atoms liegt.
  • Um ein Atom anzuregen, benötigt es ebenfalls exakt einen solchen "passenden" Energiebetrag.
  • Das Auftreten von Linienspektren kann durch diskrete Energieniveaus erklärt werden.

Zum Artikel Zu den Aufgaben

Klassische Röntgenaufnahmen

Grundwissen

  • Röntgenstrahlen bzw. Röntgenbilder sind in der Medizin wichtige Diagnosewerkzeuge.
  • Dabei wird ausgenutzt, dass unterschiedliches Gewebe und Knochen die Röntgenstrahlung unterschiedlich stark absorbieren (schwächen).
  • Moderne digitale Röntgengeräte senken die durch eine Röntgenaufnahme verursachte Strahlenbelastung stark.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Röntgenstrahlen bzw. Röntgenbilder sind in der Medizin wichtige Diagnosewerkzeuge.
  • Dabei wird ausgenutzt, dass unterschiedliches Gewebe und Knochen die Röntgenstrahlung unterschiedlich stark absorbieren (schwächen).
  • Moderne digitale Röntgengeräte senken die durch eine Röntgenaufnahme verursachte Strahlenbelastung stark.

Zum Artikel Zu den Aufgaben

Aktivität eines Präparats

Grundwissen

  • Die Aktivität \(A\) einer radioaktiven Quelle gibt die Anzahl der Zerfälle \(\Delta N\) in der Quelle pro Zeitintervall \(\Delta t\) an.
  • Die Einheit der Aktivität ist Becquerel: \(\left[A\right]=1\,\rm{Bq}\)
  • Zur besseren Vergleichbarkeit wird häufig die spezifische Aktivität einer Probe angegeben, die das Verhältnis von Aktivität zur Masse der Probe beschreibt.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Aktivität \(A\) einer radioaktiven Quelle gibt die Anzahl der Zerfälle \(\Delta N\) in der Quelle pro Zeitintervall \(\Delta t\) an.
  • Die Einheit der Aktivität ist Becquerel: \(\left[A\right]=1\,\rm{Bq}\)
  • Zur besseren Vergleichbarkeit wird häufig die spezifische Aktivität einer Probe angegeben, die das Verhältnis von Aktivität zur Masse der Probe beschreibt.

Zum Artikel Zu den Aufgaben

Überblick über die Strahlungsarten

Grundwissen

  • Die drei Strahlungsarten unterscheiden sich in vielfältigen Eigenschaften
  • Aber jede der Strahlungsarten kann für den Menschen gefährlich sein

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die drei Strahlungsarten unterscheiden sich in vielfältigen Eigenschaften
  • Aber jede der Strahlungsarten kann für den Menschen gefährlich sein

Zum Artikel Zu den Aufgaben

Halbwertszeit

Grundwissen

  • Die Halbwertszeit \(T_{1/2}\) gibt an, nach welcher Zeitspanne sich die Anzahl der radioaktiven Ausgangskerne halbiert hat.
  • Nach einer Halbwertszeit hat sich auch entsprechend die Aktivität \(A\) einer Probe halbiert.
  • Die Halbwertszeiten variieren sehr stark zwischen verschiedenen Isotopen.
  • Es gilt: \(N(t) = {\left( {\frac{1}{2}} \right)^{\frac{t}{{{T_{1/2}}}}}} \cdot N(0)\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Halbwertszeit \(T_{1/2}\) gibt an, nach welcher Zeitspanne sich die Anzahl der radioaktiven Ausgangskerne halbiert hat.
  • Nach einer Halbwertszeit hat sich auch entsprechend die Aktivität \(A\) einer Probe halbiert.
  • Die Halbwertszeiten variieren sehr stark zwischen verschiedenen Isotopen.
  • Es gilt: \(N(t) = {\left( {\frac{1}{2}} \right)^{\frac{t}{{{T_{1/2}}}}}} \cdot N(0)\)

Zum Artikel Zu den Aufgaben

Strahlenschutz

Grundwissen

Die 5 "A"s des Strahlenschutzes:

  • Abstand erhöhen!
  • Aufenthaltsdauer verkürzen!
  • Aktivität vermindern!
  • Abschirmung verstärken!
  • Aufnahme in den Körper vermeiden!

Zum Artikel Zu den Aufgaben
Grundwissen

Die 5 "A"s des Strahlenschutzes:

  • Abstand erhöhen!
  • Aufenthaltsdauer verkürzen!
  • Aktivität vermindern!
  • Abschirmung verstärken!
  • Aufnahme in den Körper vermeiden!

Zum Artikel Zu den Aufgaben

Energiebilanz beim Alpha-Zerfall

Grundwissen

  • Beim Alpha-Zerfall emittiert der Mutterkern \(\rm{X}\) ein \(\alpha\)-Teilchen (\(\rm{He}\)-Kern). Die Ordnungszahl des Tochterkerns \(\rm{Y}\) ist um \(2\), die Massenzahl um \(4\) kleiner als die des Mutterkerns.
  • Die Reaktionsgleichung lautet \(_{Z}^{A}{\rm{X}}\to\;_{Z-2}^{A-4}{\rm{Y}} +\;_{2}^{4}{\rm{He }}\)
  • Der \(Q\)-Wert berechnet sich mit Atommassen durch \(Q = \left[ m_{\rm{A}}\left( \rm{X} \right)-m_{\rm{A}}\left( \rm{Y} \right)-m_{\rm{A}}\left(_{2}^{4}{\rm{He }} \right) \right] \cdot c^2\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Beim Alpha-Zerfall emittiert der Mutterkern \(\rm{X}\) ein \(\alpha\)-Teilchen (\(\rm{He}\)-Kern). Die Ordnungszahl des Tochterkerns \(\rm{Y}\) ist um \(2\), die Massenzahl um \(4\) kleiner als die des Mutterkerns.
  • Die Reaktionsgleichung lautet \(_{Z}^{A}{\rm{X}}\to\;_{Z-2}^{A-4}{\rm{Y}} +\;_{2}^{4}{\rm{He }}\)
  • Der \(Q\)-Wert berechnet sich mit Atommassen durch \(Q = \left[ m_{\rm{A}}\left( \rm{X} \right)-m_{\rm{A}}\left( \rm{Y} \right)-m_{\rm{A}}\left(_{2}^{4}{\rm{He }} \right) \right] \cdot c^2\)

Zum Artikel Zu den Aufgaben

Energiebilanz beim Beta-Minus-Zerfall

Grundwissen

  • Beim Beta-Minus-Zerfall wandelt sich im Mutterkern \(\rm{X}\) ein Neutron in ein Proton um. Gleichzeitig wird ein \(\beta^-\)-Teilchen (Elektron) und ein Anti-Elektron-Neutrino \(\bar \nu_{\rm{e}}\) emittiert. Die Ordnungszahl des Tochterkerns \(\rm{Y}\) ist um \(1\) größer als die des Mutterkerns, die Massenzahl bleibt gleich.
  • Die Reaktionsgleichung lautet \(_Z^A{\rm{X}}\to\;_{Z+1}^A{\rm{Y}} +\;_{-1}^0{\rm{e^-}}+\;_0^0{\bar \nu_{\rm{e}}}\)
  • Der \(Q\)-Wert berechnet sich mit Atommassen durch \(Q=\left[ m_{\rm{A}}\left( \rm{X} \right)-m_{\rm{A}}\left( \rm{Y} \right)\right] \cdot c^2\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Beim Beta-Minus-Zerfall wandelt sich im Mutterkern \(\rm{X}\) ein Neutron in ein Proton um. Gleichzeitig wird ein \(\beta^-\)-Teilchen (Elektron) und ein Anti-Elektron-Neutrino \(\bar \nu_{\rm{e}}\) emittiert. Die Ordnungszahl des Tochterkerns \(\rm{Y}\) ist um \(1\) größer als die des Mutterkerns, die Massenzahl bleibt gleich.
  • Die Reaktionsgleichung lautet \(_Z^A{\rm{X}}\to\;_{Z+1}^A{\rm{Y}} +\;_{-1}^0{\rm{e^-}}+\;_0^0{\bar \nu_{\rm{e}}}\)
  • Der \(Q\)-Wert berechnet sich mit Atommassen durch \(Q=\left[ m_{\rm{A}}\left( \rm{X} \right)-m_{\rm{A}}\left( \rm{Y} \right)\right] \cdot c^2\)

Zum Artikel Zu den Aufgaben

Wahrscheinlichkeitsverteilungen beim H-Atom

Grundwissen

  • Die Wahrscheinlichkeitsverteilung kann mit verschiedenen Darstellungsformen visualisiert werden.

Zum Artikel
Grundwissen

  • Die Wahrscheinlichkeitsverteilung kann mit verschiedenen Darstellungsformen visualisiert werden.

Zum Artikel Zu den Aufgaben

Warum ist der Laser wichtig für uns?

Grundwissen

  • Laser kommen in verschiedensten Lebensbereichen zum Einsatz: von der Medizin, über die Datenübertragung im Internet bis hin zur Messwertgewinnung für die Wettervorhersage.

Zum Artikel
Grundwissen

  • Laser kommen in verschiedensten Lebensbereichen zum Einsatz: von der Medizin, über die Datenübertragung im Internet bis hin zur Messwertgewinnung für die Wettervorhersage.

Zum Artikel Zu den Aufgaben

Bestandteile eines Lasers

Grundwissen

  • Laser habe drei zentrale Bestandteile: das Lasermedium, die Pumpe und den Resonator.
  • Die Pumpe bringt Energie ins System und sorgt für eine Besetzungsinversion im Lasermedium.
  • Der Resonator, eine Anordnung aus zwei parallelen Spiegeln, verstärkt den Laserstrahl und richtet ihn aus.

Zum Artikel
Grundwissen

  • Laser habe drei zentrale Bestandteile: das Lasermedium, die Pumpe und den Resonator.
  • Die Pumpe bringt Energie ins System und sorgt für eine Besetzungsinversion im Lasermedium.
  • Der Resonator, eine Anordnung aus zwei parallelen Spiegeln, verstärkt den Laserstrahl und richtet ihn aus.

Zum Artikel Zu den Aufgaben

Stimulierte (induzierte) Emission

Grundwissen

  • Laser nutzen den Effekt der stimulierte (induzierten) Emission.
  • Dabei stimuliert ein Photon ein passend angeregtes Atom dazu, ein Photon zu emittieren.
  • Dieses Photon besitzt die gleiche Energie, die gleiche Schwingungsphase, die gleiche Bewegungsrichtung und die gleiche Polarisation wie das auslösende Photon.

Zum Artikel
Grundwissen

  • Laser nutzen den Effekt der stimulierte (induzierten) Emission.
  • Dabei stimuliert ein Photon ein passend angeregtes Atom dazu, ein Photon zu emittieren.
  • Dieses Photon besitzt die gleiche Energie, die gleiche Schwingungsphase, die gleiche Bewegungsrichtung und die gleiche Polarisation wie das auslösende Photon.

Zum Artikel Zu den Aufgaben

Eigenschaften der Laserstrahlung

Grundwissen

  • Laserlicht ist monofrequent und linear polarisiert.
  • Laserlicht besitzt nur eine sehr geringe Divergenz, ein Laserbündel weitet sich also nur sehr wenig auf.
  • Mit Laserlicht können hohe Leistungsdichten im Fokus erreicht werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Laserlicht ist monofrequent und linear polarisiert.
  • Laserlicht besitzt nur eine sehr geringe Divergenz, ein Laserbündel weitet sich also nur sehr wenig auf.
  • Mit Laserlicht können hohe Leistungsdichten im Fokus erreicht werden.

Zum Artikel Zu den Aufgaben

Lasermedien

Grundwissen

  • In Lasermedien muss eine Besetzungsinversion erzeugt werden, dies ist bei Medien mit nur zwei Energiezuständen nicht möglich.
  • Lasermedien besitzen daher mehr als zwei Energiezustände.
  • Dabei ist ein angeregter Energiezustand, der nicht der höchste ist, metastabil, also langlebig. Eine Besetzungsinversion wird möglich.

Zum Artikel
Grundwissen

  • In Lasermedien muss eine Besetzungsinversion erzeugt werden, dies ist bei Medien mit nur zwei Energiezuständen nicht möglich.
  • Lasermedien besitzen daher mehr als zwei Energiezustände.
  • Dabei ist ein angeregter Energiezustand, der nicht der höchste ist, metastabil, also langlebig. Eine Besetzungsinversion wird möglich.

Zum Artikel Zu den Aufgaben

Was ist Bionik?

Grundwissen
Grundwissen

Der Lotuseffekt - selbstreinigende Oberfläche

Grundwissen
Grundwissen

Auftrieb

Grundwissen
Grundwissen

Flugfrüchte

Grundwissen
Grundwissen

Leichtbauweise

Grundwissen
Grundwissen

Kernspaltung

Grundwissen

  • Schwere Atomkerne (große Massenzahl \(A\)) können z. B. durch den Beschuss mit langsamen Neutronen in mehrere kleinere Atomkerne gespalten werden.
  • Bei der Spaltreaktion tritt ein Massendefekt auf: Die Gesamtmasse nach der Spaltung ist kleiner als die Gesamtmasse vor der Spaltung.
  • Mithilfe eines \(A\)-\(\frac{B}{A}\)-Diagramms kannst du grob abschätzen, wie viel Energie bei einer Kernspaltung frei wird.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Schwere Atomkerne (große Massenzahl \(A\)) können z. B. durch den Beschuss mit langsamen Neutronen in mehrere kleinere Atomkerne gespalten werden.
  • Bei der Spaltreaktion tritt ein Massendefekt auf: Die Gesamtmasse nach der Spaltung ist kleiner als die Gesamtmasse vor der Spaltung.
  • Mithilfe eines \(A\)-\(\frac{B}{A}\)-Diagramms kannst du grob abschätzen, wie viel Energie bei einer Kernspaltung frei wird.

Zum Artikel Zu den Aufgaben

Kernfusion

Grundwissen

  • Zwei leichte Atomkerne können zu einem größeren Kern fusioniert werden, insbesondere Deuterium und Tritium zu Helium.
  • Bei der Fusionsreaktion tritt ein Massendefekt auf: Die Gesamtmasse nach der Fusion sind kleiner als die Gesamtmasse vor der Fusion.
  • Mithilfe eines \(A\)-\(\frac{B}{A}\)-Diagramms kannst du grob abschätzen, wie viel Energie bei einer Kernfusion frei wird.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Zwei leichte Atomkerne können zu einem größeren Kern fusioniert werden, insbesondere Deuterium und Tritium zu Helium.
  • Bei der Fusionsreaktion tritt ein Massendefekt auf: Die Gesamtmasse nach der Fusion sind kleiner als die Gesamtmasse vor der Fusion.
  • Mithilfe eines \(A\)-\(\frac{B}{A}\)-Diagramms kannst du grob abschätzen, wie viel Energie bei einer Kernfusion frei wird.

Zum Artikel Zu den Aufgaben