Direkt zum Inhalt
Suchergebnisse 181 - 210 von 243

Formeln Dynamik

Grundwissen

  • Formelübersicht für massebehaftete und masselose Teilchen

Zum Artikel
Grundwissen

  • Formelübersicht für massebehaftete und masselose Teilchen

Zum Artikel Zu den Aufgaben

Energie-Impuls-Beziehung

Grundwissen

  • Klassisch ist die Beziehung zwischen kinetischer Energie und Impuls \({E_{\rm{kin}}} = \frac{{{p^2}}}{{2 \cdot m}}\)
  • Relativistisch gilt zwischen Gesamtenergie, Ruheenergie und Impuls die Beziehung \(E = \sqrt{E_0^2 + (c\cdot p)^2}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Klassisch ist die Beziehung zwischen kinetischer Energie und Impuls \({E_{\rm{kin}}} = \frac{{{p^2}}}{{2 \cdot m}}\)
  • Relativistisch gilt zwischen Gesamtenergie, Ruheenergie und Impuls die Beziehung \(E = \sqrt{E_0^2 + (c\cdot p)^2}\)

Zum Artikel Zu den Aufgaben

Relativistische Energie

Grundwissen

  • Die relativistische Gesamtenergie eines Körpers ist \(E(v)=m_{\rm{rel}}\cdot c^2=\frac{m_0}{\sqrt{1-\left(\frac{v}{c}\right)^2}}\cdot c^2\)
  • Die Ruheenergie eines Körpers ist \(E_0=m_0\cdot c^2\)
  • Die kinetische Energie ist die Differenz der Gesamtenergie \(E(v)\) und der Ruheenergie \(E_0\), also \(E_{\rm{kin}}=\left( {\frac{m_0}{\sqrt{1-\left(\frac{v}{c}\right)^2}} - {m_0}} \right) \cdot {c^2}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die relativistische Gesamtenergie eines Körpers ist \(E(v)=m_{\rm{rel}}\cdot c^2=\frac{m_0}{\sqrt{1-\left(\frac{v}{c}\right)^2}}\cdot c^2\)
  • Die Ruheenergie eines Körpers ist \(E_0=m_0\cdot c^2\)
  • Die kinetische Energie ist die Differenz der Gesamtenergie \(E(v)\) und der Ruheenergie \(E_0\), also \(E_{\rm{kin}}=\left( {\frac{m_0}{\sqrt{1-\left(\frac{v}{c}\right)^2}} - {m_0}} \right) \cdot {c^2}\)

Zum Artikel Zu den Aufgaben

Längenkontraktion

Grundwissen

  • Für bewegte Beobachter sind Strecken verkürzt.
  • Für die Längenkontraktion gilt: \(\Delta x' = \Delta x \cdot \sqrt{1 - \left(\frac{v}{c}\right)^2}\)
  • Die Längenkontraktion findet nur in Bewegungsrichtung statt.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Für bewegte Beobachter sind Strecken verkürzt.
  • Für die Längenkontraktion gilt: \(\Delta x' = \Delta x \cdot \sqrt{1 - \left(\frac{v}{c}\right)^2}\)
  • Die Längenkontraktion findet nur in Bewegungsrichtung statt.

Zum Artikel Zu den Aufgaben

EINSTEINs Postulate

Grundwissen

  • Erstes Postulat (Relativitätsprinzip): Alle Inertialsysteme sind bezüglich aller physikalischen Gesetze gleichberechtigt.
  • Zweites Postulat (Konstanz der Lichtgeschwindigkeit): Die Vakuumlichtgeschwindigkeit \(c\) ist in allen Inertialsystemen gleich groß.

Zum Artikel
Grundwissen

  • Erstes Postulat (Relativitätsprinzip): Alle Inertialsysteme sind bezüglich aller physikalischen Gesetze gleichberechtigt.
  • Zweites Postulat (Konstanz der Lichtgeschwindigkeit): Die Vakuumlichtgeschwindigkeit \(c\) ist in allen Inertialsystemen gleich groß.

Zum Artikel Zu den Aufgaben

Geschwindigkeitsbetrachtung

Grundwissen

  • Klassische können Geschwindigkeiten von einem bewegten Bezugssystem und einer Bewegung innerhalb einfach addiert werden, um die Geschwindigkeit zu ermitteln, die man im ruhenden Bezugssystem messen würde.
  • Die Konstanz der Lichtgeschwindigkeit hat zur Folge, dass diese einfache Addition nicht richtig sein kann.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Klassische können Geschwindigkeiten von einem bewegten Bezugssystem und einer Bewegung innerhalb einfach addiert werden, um die Geschwindigkeit zu ermitteln, die man im ruhenden Bezugssystem messen würde.
  • Die Konstanz der Lichtgeschwindigkeit hat zur Folge, dass diese einfache Addition nicht richtig sein kann.

Zum Artikel Zu den Aufgaben

Inertialsystem

Grundwissen

  • Ein Inertialsystem ist ein Bezugssystem, in dem ein kräftefreier Körper in Ruhe verharrt oder sich geradlinig-gleichförmig bewegt.
  • Alle Systeme, die sich geradlinig-gleichförmig gegenüber einem Inertialsystem bewegen, sind ebenfalls Inertialsysteme.

Zum Artikel
Grundwissen

  • Ein Inertialsystem ist ein Bezugssystem, in dem ein kräftefreier Körper in Ruhe verharrt oder sich geradlinig-gleichförmig bewegt.
  • Alle Systeme, die sich geradlinig-gleichförmig gegenüber einem Inertialsystem bewegen, sind ebenfalls Inertialsysteme.

Zum Artikel Zu den Aufgaben

Effekte

Grundwissen

  • Zeitdilatation: Eine bewegte Uhr geht langsamer als eine gleichartige im Ruhesystem!
  • Gleichzeitigkeit ist relativ und hängt davon ab, von welchem Bezugssystem aus die Beobachtung erfolgt.
  • Längenkontraktion: Ein bewegter Maßstab ist in Bewegungsrichtung kürzer als im Ruhesystem!

Zum Artikel
Grundwissen

  • Zeitdilatation: Eine bewegte Uhr geht langsamer als eine gleichartige im Ruhesystem!
  • Gleichzeitigkeit ist relativ und hängt davon ab, von welchem Bezugssystem aus die Beobachtung erfolgt.
  • Längenkontraktion: Ein bewegter Maßstab ist in Bewegungsrichtung kürzer als im Ruhesystem!

Zum Artikel Zu den Aufgaben

Zeitdilatation

Grundwissen

  • Zeitdilatation: Eine relativ zu einem Beobachter bewegte Uhr geht aus der Sicht des Beobachters langsamer als ein Satz synchronisierter Uhren im "Beobachter-System".
  • Vereinfacht: Bewegte Uhren gehen langsamer.
  • Der Zusammenhang zwischen Zeit \(\Delta t\) im ruhenden und \(\Delta t'\) im bewegten System ist \(\Delta t = \frac{\Delta t'}{\sqrt{1 - (\frac{v}{c})^2}}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Zeitdilatation: Eine relativ zu einem Beobachter bewegte Uhr geht aus der Sicht des Beobachters langsamer als ein Satz synchronisierter Uhren im "Beobachter-System".
  • Vereinfacht: Bewegte Uhren gehen langsamer.
  • Der Zusammenhang zwischen Zeit \(\Delta t\) im ruhenden und \(\Delta t'\) im bewegten System ist \(\Delta t = \frac{\Delta t'}{\sqrt{1 - (\frac{v}{c})^2}}\)

Zum Artikel Zu den Aufgaben

Gleichzeitigkeit

Grundwissen

  • In einem Inertialsystem finden zwei Ereignisse an zwei verschiedenen Orten gleichzeitig statt, wenn sie von einem Lichtblitz ausgelöst werden können, der genau aus der Mitte zwischen ihren Orten ausgeht.
  • Finden zwei Ereignisse in einem Inertialsystem gleichzeitig statt, so finden sie in einem zweiten, gegenüber dem ersten Inertialsystem bewegten Inertialsystem zu verschiedenen Zeiten statt.
  • Auch Gleichzeitigkeit ist relativ.

Zum Artikel Zu den Aufgaben
Grundwissen

  • In einem Inertialsystem finden zwei Ereignisse an zwei verschiedenen Orten gleichzeitig statt, wenn sie von einem Lichtblitz ausgelöst werden können, der genau aus der Mitte zwischen ihren Orten ausgeht.
  • Finden zwei Ereignisse in einem Inertialsystem gleichzeitig statt, so finden sie in einem zweiten, gegenüber dem ersten Inertialsystem bewegten Inertialsystem zu verschiedenen Zeiten statt.
  • Auch Gleichzeitigkeit ist relativ.

Zum Artikel Zu den Aufgaben

Relativistische Masse und Impuls

Grundwissen

  • Auch die Masse eines Teilchens und sein Impuls unterliegen relativistischen Effekten.
  • Die relativistische Masse  nimmt mit der Geschwindigkeit \(v\) eines Teilchens stark zu, es gilt: \(m_{\rm{rel}}=\frac{m_0}{\sqrt{1 - \left(\frac{v}{c}\right)^2}}\)
  • Für den relativistischen Impuls gilt \(p = m_{\rm{rel}}\cdot v    \Rightarrow     p = \frac{m_0}{\sqrt{1 - \left(\frac{v}{c}\right)^2}} \cdot v\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Auch die Masse eines Teilchens und sein Impuls unterliegen relativistischen Effekten.
  • Die relativistische Masse  nimmt mit der Geschwindigkeit \(v\) eines Teilchens stark zu, es gilt: \(m_{\rm{rel}}=\frac{m_0}{\sqrt{1 - \left(\frac{v}{c}\right)^2}}\)
  • Für den relativistischen Impuls gilt \(p = m_{\rm{rel}}\cdot v    \Rightarrow     p = \frac{m_0}{\sqrt{1 - \left(\frac{v}{c}\right)^2}} \cdot v\)

Zum Artikel Zu den Aufgaben

Geschwindigkeitsaddition

Grundwissen

  • Ist \(u\) die Geschwindigkeit eines Körpers im System S und \(v\) die Geschwindigkeit des Systems S' in Bezug auf S und \(u'\) die Geschwindigkeit des Körpers im System S', dann gilt der Zusammenhang \(u = \frac{{u' + v}}{{1 + \frac{{u' \cdot v}}{{{c^2}}}}}\).

 

 

 

Zum Artikel
Grundwissen

  • Ist \(u\) die Geschwindigkeit eines Körpers im System S und \(v\) die Geschwindigkeit des Systems S' in Bezug auf S und \(u'\) die Geschwindigkeit des Körpers im System S', dann gilt der Zusammenhang \(u = \frac{{u' + v}}{{1 + \frac{{u' \cdot v}}{{{c^2}}}}}\).

 

 

 

Zum Artikel Zu den Aufgaben

Albert Abraham MICHELSON (1852 - 1931) und Edward Williams MORLEY (1838 - 1923)

Geschichte
Geschichte

Albert EINSTEIN (1879 - 1955)

Geschichte
Geschichte

Messung der Schallgeschwindigkeit in Luft (Simulation von Andrew Duffy)

Download ( Simulation )

Dies ist eine Simulation einer physikalischen Standarddemonstration zur Messung der Schallgeschwindigkeit in der Luft. Eine vibrierende Stimmgabel…

Zum Download
Download ( Simulation )

Dies ist eine Simulation einer physikalischen Standarddemonstration zur Messung der Schallgeschwindigkeit in der Luft. Eine vibrierende Stimmgabel…

Zum Download

Messung der Schallgeschwindigkeit in Luft (Simulation von Andrew Duffy)

Grundwissen

  • Die Simulation ermöglicht die Messung der Schallgeschwindigkeit mit Hilfe von Stehenden Wellen in einem mit Wasser gefülltem Standzylinder

Zum Artikel
Grundwissen

  • Die Simulation ermöglicht die Messung der Schallgeschwindigkeit mit Hilfe von Stehenden Wellen in einem mit Wasser gefülltem Standzylinder

Zum Artikel Zu den Aufgaben

DOPPLER-Effekt bei bewegtem Sender (IBE)

Download ( Simulation )

Doppler-Effekt (bewegte Quelle) (© 2021, AG Didaktik der Physik, Freie Universität Berlin) Dieser Versuchsaufbau ermöglicht die Messung der…

Zum Download
Download ( Simulation )

Doppler-Effekt (bewegte Quelle) (© 2021, AG Didaktik der Physik, Freie Universität Berlin) Dieser Versuchsaufbau ermöglicht die Messung der…

Zum Download

DOPPLER-Effekt bei bewegtem Empfänger (IBE)

Download ( Simulation )

Doppler-Effekt (bewegter Empfänger) (© 2021, AG Didaktik der Physik, Freie Universität Berlin) Dieser Versuchsaufbau ermöglicht die Messung der…

Zum Download
Download ( Simulation )

Doppler-Effekt (bewegter Empfänger) (© 2021, AG Didaktik der Physik, Freie Universität Berlin) Dieser Versuchsaufbau ermöglicht die Messung der…

Zum Download

Schwebungen (Simulation)

Download ( Simulation )

Die Simulation zeigt den Effekt der Schwebung. Die beiden oberen Diagramme zeigen für zwei Einzelwellen gleicher Amplitude jeweils die Elongation…

Zum Download
Download ( Simulation )

Die Simulation zeigt den Effekt der Schwebung. Die beiden oberen Diagramme zeigen für zwei Einzelwellen gleicher Amplitude jeweils die Elongation…

Zum Download

Beispiel zum DOPPLER-Effekt (Animation)

Download ( Animationen )

Diese Animation zeigt einen Notarztwagen, der mit eingeschaltetem Martinshorn an einer Person vorbeifährt, die an der Straße steht. Solange das…

Zum Download
Download ( Animationen )

Diese Animation zeigt einen Notarztwagen, der mit eingeschaltetem Martinshorn an einer Person vorbeifährt, die an der Straße steht. Solange das…

Zum Download

Schallwellen - Ausbreitung einer Longitudinalwelle in einem Festkörper (Animation)

Download ( Animationen )

Die Animation zeigt die Ausbreitung einer Longitudinalwelle in einem Festkörper.

Zum Download
Download ( Animationen )

Die Animation zeigt die Ausbreitung einer Longitudinalwelle in einem Festkörper.

Zum Download

Schallwellen - Ausbreitung einer Longitudinalwelle in einem Gas oder einer Flüssigkeit (Animation)

Download ( Animationen )

Die Animation zeigt die Ausbreitung einer Longitudinalwelle in einem Gas oder einer Flüssigkeit.

Zum Download
Download ( Animationen )

Die Animation zeigt die Ausbreitung einer Longitudinalwelle in einem Gas oder einer Flüssigkeit.

Zum Download

Schallwellen - Ausbreitung einer Transversalwelle in einem Festkörper (Animation)

Download ( Animationen )

Die Animation zeigt die Ausbreitung einer Transversalwelle in einem Festkörper.

Zum Download
Download ( Animationen )

Die Animation zeigt die Ausbreitung einer Transversalwelle in einem Festkörper.

Zum Download

Schallwellen - Kopplungskräfte in Festkörpern (Animation)

Download ( Animationen )

Die Animation zeigt, wie die Kopplungskräfte zwischen den Teilchen in einem Festkörper (Kristallgitter als Feder-Kugel-Modell) zur Ausbreitung sowohl…

Zum Download
Download ( Animationen )

Die Animation zeigt, wie die Kopplungskräfte zwischen den Teilchen in einem Festkörper (Kristallgitter als Feder-Kugel-Modell) zur Ausbreitung sowohl…

Zum Download

Ultraschall beim Auto - 1 (Animation)

Download ( Animationen )

Die Animation zeigt - stark vereinfacht - das Prinzip der Entfernungsmessung mit einer Ultraschall-Einheit.

Zum Download
Download ( Animationen )

Die Animation zeigt - stark vereinfacht - das Prinzip der Entfernungsmessung mit einer Ultraschall-Einheit.

Zum Download

Ultraschall beim Auto - 2 (Animation)

Download ( Animationen )

Die Animation zeigt verschiedene Ultraschall-Sensoren im Auto.

Zum Download
Download ( Animationen )

Die Animation zeigt verschiedene Ultraschall-Sensoren im Auto.

Zum Download

Ultraschall beim Auto - 3 (Animation)

Download ( Animationen )

Die Animation zeigt Ultraschall- und weitere mögliche Sensoren am Auto.

Zum Download
Download ( Animationen )

Die Animation zeigt Ultraschall- und weitere mögliche Sensoren am Auto.

Zum Download

Ultraschall-Sensoren - 1 (Animation)

Download ( Animationen )

Die Animation zeigt das Funktionsprinzip der Kraftmessung mit einem Piezo-Kristall.

Zum Download
Download ( Animationen )

Die Animation zeigt das Funktionsprinzip der Kraftmessung mit einem Piezo-Kristall.

Zum Download

Ultraschall-Sensoren - 2 (Animation)

Download ( Animationen )

Die Animation zeigt die Messung einer Ultraschall-Welle mit einem Piezo-Kristall.

Zum Download
Download ( Animationen )

Die Animation zeigt die Messung einer Ultraschall-Welle mit einem Piezo-Kristall.

Zum Download

Ultraschall-Sensoren - 3 (Animation)

Download ( Animationen )

Die Animation zeigt das Prinzip der Entfernungsmessung mit einem Ultraschall-Sender und einem Piezo-Kristall.

Zum Download
Download ( Animationen )

Die Animation zeigt das Prinzip der Entfernungsmessung mit einem Ultraschall-Sender und einem Piezo-Kristall.

Zum Download