Direkt zum Inhalt
Suchergebnisse 1141 - 1169 von 1169

Gravitationsfeldstärke und Ortsfaktor

Ausblick
Ausblick

Bogenschießen (CK-12-Simulation)

Download ( Animationen )

Die Simulation wird zur Verfügung gestellt von https://www.ck12.org. https://www.ck12.org Lizenz:…

Zum Download
Download ( Animationen )

Die Simulation wird zur Verfügung gestellt von https://www.ck12.org. https://www.ck12.org Lizenz:…

Zum Download

Übersicht über die Strömungslehre

Grundwissen

  • Die Strömungslehre beschäftigt sich mit der Bewegung von Flüssigkeiten und Gasen.
  • Dabei unterscheidet man die Bewegung von Flüssigkeiten (Hydrodynamik) und die von Gasen (Aerodynamik).
  • Die Strömungslehre hat vielfältige Anwendungsmöglichkeiten im Alltag.

Zum Artikel
Grundwissen

  • Die Strömungslehre beschäftigt sich mit der Bewegung von Flüssigkeiten und Gasen.
  • Dabei unterscheidet man die Bewegung von Flüssigkeiten (Hydrodynamik) und die von Gasen (Aerodynamik).
  • Die Strömungslehre hat vielfältige Anwendungsmöglichkeiten im Alltag.

Zum Artikel Zu den Aufgaben

2. Newtonsches Gesetz (Aktionsprinzip)

Grundwissen

  • Wirkt auf einen Körper eine resultierende Kraft \(\vec{F}\), so wird der Körper in die Richtung der Kraft beschleunigt.
  • Es gilt \(\vec{F}=m\cdot \vec{a}=m\cdot \frac{\Delta \vec{v}}{\Delta t}\)
  • Die Einheit der Kraft ist 1 Newton: \(\left[ F \right] = \left[ m \right] \cdot \left[ a \right] = 1\,{\rm{kg}} \cdot 1\,\frac{{\rm{m}}}{{{{\rm{s}}^{\rm{2}}}}} = 1\,{\rm{kg}} \cdot \frac{{\rm{m}}}{{{{\rm{s}}^{\rm{2}}}}} = 1\,{\rm{N}}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Wirkt auf einen Körper eine resultierende Kraft \(\vec{F}\), so wird der Körper in die Richtung der Kraft beschleunigt.
  • Es gilt \(\vec{F}=m\cdot \vec{a}=m\cdot \frac{\Delta \vec{v}}{\Delta t}\)
  • Die Einheit der Kraft ist 1 Newton: \(\left[ F \right] = \left[ m \right] \cdot \left[ a \right] = 1\,{\rm{kg}} \cdot 1\,\frac{{\rm{m}}}{{{{\rm{s}}^{\rm{2}}}}} = 1\,{\rm{kg}} \cdot \frac{{\rm{m}}}{{{{\rm{s}}^{\rm{2}}}}} = 1\,{\rm{N}}\)

Zum Artikel Zu den Aufgaben

Beugung

Grundwissen

  • Beugung ist die Ablenkung einer Welle an einem Hindernis, die nicht durch Brechung, Streuung oder Reflexion verursacht wird.
  • Beugung ist bemerkbar, wenn die Dimension einer Öffnung oder eines Hindernisses in der Größenordnung der Wellenlänge liegt oder kleiner als diese ist.

Zum Artikel
Grundwissen

  • Beugung ist die Ablenkung einer Welle an einem Hindernis, die nicht durch Brechung, Streuung oder Reflexion verursacht wird.
  • Beugung ist bemerkbar, wenn die Dimension einer Öffnung oder eines Hindernisses in der Größenordnung der Wellenlänge liegt oder kleiner als diese ist.

Zum Artikel Zu den Aufgaben

Größen zur Beschreibung von Strömungen

Grundwissen

  • Zentrale Größen zur Beschreibung von Strömungen sind die Geschwindigkeit\(v\), der Druck \(p\), die Dichte \(\rho\), die Temperatur \(T\) und die dynamische Viskosität \(\eta\).

Zum Artikel
Grundwissen

  • Zentrale Größen zur Beschreibung von Strömungen sind die Geschwindigkeit\(v\), der Druck \(p\), die Dichte \(\rho\), die Temperatur \(T\) und die dynamische Viskosität \(\eta\).

Zum Artikel Zu den Aufgaben

Kontinuitätsgleichungen

Grundwissen

  • Die Größe \(\frac{m}{t}=\rho\cdot v\cdot A\) bzw. infinitesimal \(\frac{dm}{dt}=\dot{m}\) bezeichnet man als Massenstrom.
  • Bei einer stationären Strömung ist wegen der Massenerhaltung der Massenstrom \(\dot{m}=\frac{m}{t}=\rho \cdot A \cdot v\) an allen Querschnittsflächen konstant.
  • Bei inkompressiblen Fluiden ist der Massenstrom \(\dot{m}\) proportional zum Volumenstrom \(\dot{V}\). Der Proportionalitätsfaktor ist die Dichte \(\rho\) des inkompressiblen Fluids.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Größe \(\frac{m}{t}=\rho\cdot v\cdot A\) bzw. infinitesimal \(\frac{dm}{dt}=\dot{m}\) bezeichnet man als Massenstrom.
  • Bei einer stationären Strömung ist wegen der Massenerhaltung der Massenstrom \(\dot{m}=\frac{m}{t}=\rho \cdot A \cdot v\) an allen Querschnittsflächen konstant.
  • Bei inkompressiblen Fluiden ist der Massenstrom \(\dot{m}\) proportional zum Volumenstrom \(\dot{V}\). Der Proportionalitätsfaktor ist die Dichte \(\rho\) des inkompressiblen Fluids.

Zum Artikel Zu den Aufgaben

BERNOULLI-Gleichung

Grundwissen

  • Die BERNOULLI-Gleichung liefert einen Zusammenhang zwischen Strömungsgeschwindigkeit \(v\) und Druck \(p\).
  • Die BERNOULLI-Gleichung bei stationärer, verlustfreier Strömung eines inkompressiblen Fluides ist \(\rho \cdot g \cdot h+\frac{1}{2} \cdot \rho \cdot v^2 + p=\rm{konst.}\).
  • Die Summe der potentiellen Energie, der kinetischen Energie und der Druckenergie (also der verrichteten Arbeit) entlang der Stromröhre ist erhalten.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die BERNOULLI-Gleichung liefert einen Zusammenhang zwischen Strömungsgeschwindigkeit \(v\) und Druck \(p\).
  • Die BERNOULLI-Gleichung bei stationärer, verlustfreier Strömung eines inkompressiblen Fluides ist \(\rho \cdot g \cdot h+\frac{1}{2} \cdot \rho \cdot v^2 + p=\rm{konst.}\).
  • Die Summe der potentiellen Energie, der kinetischen Energie und der Druckenergie (also der verrichteten Arbeit) entlang der Stromröhre ist erhalten.

Zum Artikel Zu den Aufgaben

Größen zur Beschreibung einer Kreisbewegung

Grundwissen

  • Das (Dreh-)Zentrum \(Z\) ist der Mittelpunkt der Kreisbahn.
  • Der Bahnradius \(r\) ist die (konstant bleibende) Entfernung des Körpers zum Drehzentrum.
  • Die Umlaufdauer \(T\) gibt an, wie lange ein Körper für einen vollständigen Umlauf der Kreisbahn benötigt.
  • Die Frequenz \(f\) ist der Kehrwert der Umlaufdauer: \(f=\frac{1}{T}\). Sie gibt an, wie viele Umläufe ein Körper pro Zeiteinheit absolviert.
  • Mit \(s\) bezeichnen wir die Länge der (Bahn-)Strecke, die der Körper seit dem Start der Kreisbewegung auf der Kreisbahn zurückgelegt hat.
  • Mit \(\varphi\) bezeichnen wir die Weite des Drehwinkels, den der Bahnradius seit dem Start der Kreisbewegung überstrichen hat.
  • Winkel werden bei der Beschreibung von Kreisbewegungen meist im Bogenmaß angegeben. Eine volle Umdrehung von \(360^\circ\) entspricht im Bogenmaß dem Wert \(2\pi\)
  • Es gilt \(s = \varphi  \cdot r \quad {\rm{bzw.}} \quad \varphi  = \frac{s}{r}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Das (Dreh-)Zentrum \(Z\) ist der Mittelpunkt der Kreisbahn.
  • Der Bahnradius \(r\) ist die (konstant bleibende) Entfernung des Körpers zum Drehzentrum.
  • Die Umlaufdauer \(T\) gibt an, wie lange ein Körper für einen vollständigen Umlauf der Kreisbahn benötigt.
  • Die Frequenz \(f\) ist der Kehrwert der Umlaufdauer: \(f=\frac{1}{T}\). Sie gibt an, wie viele Umläufe ein Körper pro Zeiteinheit absolviert.
  • Mit \(s\) bezeichnen wir die Länge der (Bahn-)Strecke, die der Körper seit dem Start der Kreisbewegung auf der Kreisbahn zurückgelegt hat.
  • Mit \(\varphi\) bezeichnen wir die Weite des Drehwinkels, den der Bahnradius seit dem Start der Kreisbewegung überstrichen hat.
  • Winkel werden bei der Beschreibung von Kreisbewegungen meist im Bogenmaß angegeben. Eine volle Umdrehung von \(360^\circ\) entspricht im Bogenmaß dem Wert \(2\pi\)
  • Es gilt \(s = \varphi  \cdot r \quad {\rm{bzw.}} \quad \varphi  = \frac{s}{r}\)

Zum Artikel Zu den Aufgaben

VENTURI-Rohr

Ausblick

  • Mit Hilfe eines VENTURI-Rohrs kann man die Strömungsgeschwindigkeit von Fluiden messen.

Zum Artikel
Ausblick

  • Mit Hilfe eines VENTURI-Rohrs kann man die Strömungsgeschwindigkeit von Fluiden messen.

Zum Artikel Zu den Aufgaben

PRANDTL-Rohr

Ausblick

  • Mit Hilfe eines PRANDTL-Rohrs kann man die Strömungsgeschwindigkeit von Fluiden messen.

Zum Artikel
Ausblick

  • Mit Hilfe eines PRANDTL-Rohrs kann man die Strömungsgeschwindigkeit von Fluiden messen.

Zum Artikel Zu den Aufgaben

Hemmungspendel (Galilei-Pendel)

Ausblick

  • Das gehemmte Pendel schwingt auf beiden Seiten gleich hoch (Energieerhaltung).
  • Bei mittig platziertem Hindernis gilt für die Periodendauer des gehemmten Pendels \(T=\frac{T_1}{2}+\frac{T_2}{2}\)
  • Wenn das Pendel höher als das Hindernis ausgelenkt wird, kommt keine Schwingung mehr zu stande.

Zum Artikel
Ausblick

  • Das gehemmte Pendel schwingt auf beiden Seiten gleich hoch (Energieerhaltung).
  • Bei mittig platziertem Hindernis gilt für die Periodendauer des gehemmten Pendels \(T=\frac{T_1}{2}+\frac{T_2}{2}\)
  • Wenn das Pendel höher als das Hindernis ausgelenkt wird, kommt keine Schwingung mehr zu stande.

Zum Artikel Zu den Aufgaben

Modell einer Loopingbahn (Simulation)

Download ( Simulation )

Diese Simulation zeigt einen einfachen Modellversuch zur Looping-Achterbahn. Um allzu komplizierte Berechnungen zu vermeiden, wird eine Kreisform…

Zum Download
Download ( Simulation )

Diese Simulation zeigt einen einfachen Modellversuch zur Looping-Achterbahn. Um allzu komplizierte Berechnungen zu vermeiden, wird eine Kreisform…

Zum Download

Milchbar (CK-12-Simulation)

Download ( Simulation )

Die Simulation wird zur Verfügung gestellt von https://www.ck12.org. https://www.ck12.org Lizenz:…

Zum Download
Download ( Simulation )

Die Simulation wird zur Verfügung gestellt von https://www.ck12.org. https://www.ck12.org Lizenz:…

Zum Download

Sinken, Schweben, Steigen, Schwimmen

Grundwissen

  • Das Zusammenspiel von Gewichtskraft \(\vec F_{\rm{G}}\) eines Körpers und seiner Auftriebskraft \(\vec F_{\rm{A}}\) im Medium bestimmen, ob der Körper sinkt, schwebt, steigt oder schwimmt.
  • Beim Schwimmen taucht ein Körpers gerade so weit in ein Medium ein, sodass gilt \({F_{\rm{A}}} = {F_{\rm{G}}}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Das Zusammenspiel von Gewichtskraft \(\vec F_{\rm{G}}\) eines Körpers und seiner Auftriebskraft \(\vec F_{\rm{A}}\) im Medium bestimmen, ob der Körper sinkt, schwebt, steigt oder schwimmt.
  • Beim Schwimmen taucht ein Körpers gerade so weit in ein Medium ein, sodass gilt \({F_{\rm{A}}} = {F_{\rm{G}}}\).

Zum Artikel Zu den Aufgaben

Additive Farbmischung - Farbpunkte (Simulation)

Download ( Simulation )

Die Simulation zeigt die Erzeugung von verschiedenen Farbeindrücken durch die räumliche Nähe von Licht der Spektralfarben "Rot", "Grün" und "Blau".

Zum Download
Download ( Simulation )

Die Simulation zeigt die Erzeugung von verschiedenen Farbeindrücken durch die räumliche Nähe von Licht der Spektralfarben "Rot", "Grün" und "Blau".

Zum Download

Additive Farbmischung - blinkender Punkt (Simulation)

Download ( Simulation )

Die Simulation zeigt die Erzeugung von verschiedenen Farbeindrücken durch die zeitliche Nähe von Licht der Spektralfarben "Rot", "Grün" und "Blau".

Zum Download
Download ( Simulation )

Die Simulation zeigt die Erzeugung von verschiedenen Farbeindrücken durch die zeitliche Nähe von Licht der Spektralfarben "Rot", "Grün" und "Blau".

Zum Download

Licht und Farben

Grundwissen

  • Licht hat keine Farbe.
  • Wenn Licht aber auf die Netzhaut im Auge trifft, senden die verschiedenen lichtempfindlichen Zapfen elektrische Impulse an das Gehirn. Dort werden diese Impulse verarbeitet und im Gehirn wird ein Farbeindruck erzeugt.
  • Licht aus verschiedenen Bereichen des Lichtbündels, das nach der Zerlegung von Sonnenlicht entsteht, erzeugt jeweils einen anderen Farbeindruck. Wir unterscheiden das Licht deshalb nach diesem Farbeindruck und bezeichnen z.B. Licht aus dem linken Bereich des Lichtbündels als "Licht der Spektralfarbe Rot" oder kurz als "rotes Licht".
  • Ist Licht verschiedener Spektralfarben gemischt, dann kann dieses Licht Farbeindrücke erzeugen, die mit Licht einer einzelnen Spektralfarbe nicht erzeugt werden können.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Licht hat keine Farbe.
  • Wenn Licht aber auf die Netzhaut im Auge trifft, senden die verschiedenen lichtempfindlichen Zapfen elektrische Impulse an das Gehirn. Dort werden diese Impulse verarbeitet und im Gehirn wird ein Farbeindruck erzeugt.
  • Licht aus verschiedenen Bereichen des Lichtbündels, das nach der Zerlegung von Sonnenlicht entsteht, erzeugt jeweils einen anderen Farbeindruck. Wir unterscheiden das Licht deshalb nach diesem Farbeindruck und bezeichnen z.B. Licht aus dem linken Bereich des Lichtbündels als "Licht der Spektralfarbe Rot" oder kurz als "rotes Licht".
  • Ist Licht verschiedener Spektralfarben gemischt, dann kann dieses Licht Farbeindrücke erzeugen, die mit Licht einer einzelnen Spektralfarbe nicht erzeugt werden können.

Zum Artikel Zu den Aufgaben

Licht und Farben - Farbeindruck (Simulation)

Download ( Simulation )

Die Animation zeigt die Entstehung des Farbeindrucks durch die Anregung verschiedener lichtempfindlicher Zapfenarten durch Licht einer Spektralfarbe.

Zum Download
Download ( Simulation )

Die Animation zeigt die Entstehung des Farbeindrucks durch die Anregung verschiedener lichtempfindlicher Zapfenarten durch Licht einer Spektralfarbe.

Zum Download

Licht und Farben - Spektralzerlegung (Simulation)

Download ( Simulation )

Die Simulation zeigt die typische Darstellung der Zerlegung von Sonnenlicht.

Zum Download
Download ( Simulation )

Die Simulation zeigt die typische Darstellung der Zerlegung von Sonnenlicht.

Zum Download

Licht und Farben - Farbmischung (Simulation)

Download ( Simulation )

Die Simulation zeigt die Entstehung des Farbeindrucks durch die Anregung verschiedener lichtempfindlicher Zapfenarten durch Licht zweier…

Zum Download
Download ( Simulation )

Die Simulation zeigt die Entstehung des Farbeindrucks durch die Anregung verschiedener lichtempfindlicher Zapfenarten durch Licht zweier…

Zum Download

Licht und Farben - Zapfenempfindlichkeit (Animation)

Download ( Simulation )

Die Animation zeigt die normierte Empfindlichkeit der R-, G- und B-Zapfen für Licht der unterschiedlichen Spektralfarben.

Zum Download
Download ( Simulation )

Die Animation zeigt die normierte Empfindlichkeit der R-, G- und B-Zapfen für Licht der unterschiedlichen Spektralfarben.

Zum Download

Subtraktive Farbmischung - Farbeindruck (Simulation)

Download ( Simulation )

Die Simulation zeigt die Entstehung unterschiedlicher Farbeindrücke beim Herausfiltern von Licht verschiedener Spektralbereiche aus Sonnenlicht.

Zum Download
Download ( Simulation )

Die Simulation zeigt die Entstehung unterschiedlicher Farbeindrücke beim Herausfiltern von Licht verschiedener Spektralbereiche aus Sonnenlicht.

Zum Download

Das menschliche Auge - Akkommodation und Sehfehler

Grundwissen

  • Als Akkommodation bezeichnet man die Änderung der Brennkraft des Auges, um Objekte in unterschiedlichen Entfernungen scharf sehen zu können.
  • Bei Kurzsichtigkeit ist die Augenlinse zu stark gekrümmt, entfernte Gegenstände werden kurz vor der Netzhaut scharf abgebildet.
  • Bei Weitsichtigkeit ist die Augenlinse nicht stark genug gekrümmt, nahe Gegenstände werden kurz hinter der Netzhaut scharf abgebildet.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Als Akkommodation bezeichnet man die Änderung der Brennkraft des Auges, um Objekte in unterschiedlichen Entfernungen scharf sehen zu können.
  • Bei Kurzsichtigkeit ist die Augenlinse zu stark gekrümmt, entfernte Gegenstände werden kurz vor der Netzhaut scharf abgebildet.
  • Bei Weitsichtigkeit ist die Augenlinse nicht stark genug gekrümmt, nahe Gegenstände werden kurz hinter der Netzhaut scharf abgebildet.

Zum Artikel Zu den Aufgaben

Licht und Farben - Farbeindruck weiss 1 (Simulation)

Download ( Simulation )

Die Simulation zeigt die Entstehung des Farbeindrucks "weiß" durch die Mischung des Lichts aller Spektralfarben.

Zum Download
Download ( Simulation )

Die Simulation zeigt die Entstehung des Farbeindrucks "weiß" durch die Mischung des Lichts aller Spektralfarben.

Zum Download

Licht und Farben - Farbeindruck weiss 2 (Simulation)

Download ( Simulation )

Die Simulation zeigt die Entstehung des Farbeindrucks "weiß" durch die Mischung des Lichts von drei Spektralfarben.

Zum Download
Download ( Simulation )

Die Simulation zeigt die Entstehung des Farbeindrucks "weiß" durch die Mischung des Lichts von drei Spektralfarben.

Zum Download

Additive Farbmischung - Farbeindruck (Simulation)

Download ( Simulation )

Die Simulation zeigt die Entstehung unterschiedlicher Farbeindrücke bei der Mischung von Licht der drei Spektralfarben "rot", "grün" und "blau".

Zum Download
Download ( Simulation )

Die Simulation zeigt die Entstehung unterschiedlicher Farbeindrücke bei der Mischung von Licht der drei Spektralfarben "rot", "grün" und "blau".

Zum Download

Regenbogen - Hauptbogen (Simulation)

Download ( Simulation )

Die Simulation zeigt die den Strahlengang von Licht, das in einem Regentropfen einmal reflektiert wird und damit zur Entstehung des Hauptbogens…

Zum Download
Download ( Simulation )

Die Simulation zeigt die den Strahlengang von Licht, das in einem Regentropfen einmal reflektiert wird und damit zur Entstehung des Hauptbogens…

Zum Download

Regenbogen - Nebenbogen (Simulation)

Download ( Simulation )

Die Simulation zeigt die den Strahlengang von Licht, das in einem Regentropfen zweimal reflektiert wird und damit zur Entstehung des Nebenbogens…

Zum Download
Download ( Simulation )

Die Simulation zeigt die den Strahlengang von Licht, das in einem Regentropfen zweimal reflektiert wird und damit zur Entstehung des Nebenbogens…

Zum Download