Direkt zum Inhalt
Suchergebnisse 901 - 930 von 953

Rückstoß (Animation)

Download ( Animationen )

Die Animation zeigt den Verlauf eines Rückstoßes.

Zum Download
Download ( Animationen )

Die Animation zeigt den Verlauf eines Rückstoßes.

Zum Download

Zentraler elastischer Stoß - Sonderfall 1 (Animation)

Download ( Animationen )

Die Animation zeigt den Ablauf eines zentralen elastischen Stoßes mit \(m_1=m_2\) und \(v_2 = 0\,\frac{{\rm{m}}}{{\rm{s}}}\).

Zum Download
Download ( Animationen )

Die Animation zeigt den Ablauf eines zentralen elastischen Stoßes mit \(m_1=m_2\) und \(v_2 = 0\,\frac{{\rm{m}}}{{\rm{s}}}\).

Zum Download

Zentraler elastischer Stoß - Sonderfall 2 (Animation)

Download ( Animationen )

Die Animation zeigt den Ablauf eines zentralen elastischen Stoßes mit \(m_1=m_2\) und \(v_2 = -v_1\).

Zum Download
Download ( Animationen )

Die Animation zeigt den Ablauf eines zentralen elastischen Stoßes mit \(m_1=m_2\) und \(v_2 = -v_1\).

Zum Download

Zentraler elastischer Stoß - Sonderfall 3 (Animation)

Download ( Animationen )

Die Animation zeigt den Ablauf eines zentralen elastischen Stoßes mit \({m_1} \ll {m_2}\) und \(v_2 = 0\,\frac{{\rm{m}}}{{\rm{s}}}\).

Zum Download
Download ( Animationen )

Die Animation zeigt den Ablauf eines zentralen elastischen Stoßes mit \({m_1} \ll {m_2}\) und \(v_2 = 0\,\frac{{\rm{m}}}{{\rm{s}}}\).

Zum Download

Zentraler vollkommen unelastischer Stoß (Animation)

Download ( Animationen )

Die Animation zeigt den Verlauf eines zentralen vollkommen unelastischen Stoßes.

Zum Download
Download ( Animationen )

Die Animation zeigt den Verlauf eines zentralen vollkommen unelastischen Stoßes.

Zum Download

Zentraler vollkommen unelastischer Stoß - Sonderfall 1 (Animation)

Download ( Animationen )

Die Animation zeigt den Verlauf eines zentralen vollkommen unelastischen Stoßes mit \(m_1=m_2\) und \(v_2 = 0\,\frac{{\rm{m}}}{{\rm{s}}}\).

Zum Download
Download ( Animationen )

Die Animation zeigt den Verlauf eines zentralen vollkommen unelastischen Stoßes mit \(m_1=m_2\) und \(v_2 = 0\,\frac{{\rm{m}}}{{\rm{s}}}\).

Zum Download

Zentraler vollkommen unelastischer Stoß - Sonderfall 2 (Animation)

Download ( Animationen )

Die Animation zeigt den Verlauf eines zentralen vollkommen unelastischen Stoßes mit \(m_1=m_2\) und \(v_2 = -v_1\).

Zum Download
Download ( Animationen )

Die Animation zeigt den Verlauf eines zentralen vollkommen unelastischen Stoßes mit \(m_1=m_2\) und \(v_2 = -v_1\).

Zum Download

Zentraler vollkommen unelastischer Stoß - Sonderfall 3 (Animation)

Download ( Animationen )

Die Animation zeigt den Verlauf eines zentralen vollkommen unelastischen Stoßes mit \({m_1} \ll {m_2}\) und \(v_2 = 0\,\frac{{\rm{m}}}{{\rm{s}}}\).

Zum Download
Download ( Animationen )

Die Animation zeigt den Verlauf eines zentralen vollkommen unelastischen Stoßes mit \({m_1} \ll {m_2}\) und \(v_2 = 0\,\frac{{\rm{m}}}{{\rm{s}}}\).

Zum Download

Rückstoß - Sonderfall 2 (Animation)

Download ( Animationen )

Die Animation zeigt den Verlauf eines Rückstoßes mit \({m_1} \gg {m_2}\) und \(v = 0\,\frac{{\rm{m}}}{{\rm{s}}}\).

Zum Download
Download ( Animationen )

Die Animation zeigt den Verlauf eines Rückstoßes mit \({m_1} \gg {m_2}\) und \(v = 0\,\frac{{\rm{m}}}{{\rm{s}}}\).

Zum Download

Rückstoß - Sonderfall 1 (Animation)

Download ( Animationen )

Die Animation zeigt den Verlauf eines Rückstoßes mit \({m_1} = {m_2}\) und \(v = 0\,\frac{{\rm{m}}}{{\rm{s}}}\).

Zum Download
Download ( Animationen )

Die Animation zeigt den Verlauf eines Rückstoßes mit \({m_1} = {m_2}\) und \(v = 0\,\frac{{\rm{m}}}{{\rm{s}}}\).

Zum Download

Feder-Schwere-Pendel

Grundwissen

  • Ein Feder-Schwere-Pendel mit einem Pendelkörper der Masse \(m\) und einer Feder mit der Federkonstante \(D\) schwingt harmonisch mit der Zeit-Ort-Funktion \(y(t) = \hat{y} \cdot \cos \left( {{\omega} \cdot t} \right)\) mit \({\omega } = \sqrt {\frac{D}{m}}\)
  • Die Schwingungsdauer berechnet sich durch \(T = 2\,\pi \cdot \sqrt {\frac{m}{D}}\); sie ist insbesondere unabhängig von der Amplitude \(\hat{y} \) der Schwingung und dem Ortsfaktor \(g\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ein Feder-Schwere-Pendel mit einem Pendelkörper der Masse \(m\) und einer Feder mit der Federkonstante \(D\) schwingt harmonisch mit der Zeit-Ort-Funktion \(y(t) = \hat{y} \cdot \cos \left( {{\omega} \cdot t} \right)\) mit \({\omega } = \sqrt {\frac{D}{m}}\)
  • Die Schwingungsdauer berechnet sich durch \(T = 2\,\pi \cdot \sqrt {\frac{m}{D}}\); sie ist insbesondere unabhängig von der Amplitude \(\hat{y} \) der Schwingung und dem Ortsfaktor \(g\).

Zum Artikel Zu den Aufgaben

Einseitiger Hebel und Drehmoment

Grundwissen

  • Beim einseitigen Hebel greifen Kräfte nur auf eine Seite der Drehachse an, z.B. am Unterarm oder an einem Schraubenschlüssel.
  • Ein einseitiger Hebel ist im Gleichgewicht, wenn die Summe der Produkte \(F\cdot a\) aller wirkenden Kräfte gleich null ist.
  • Das Produkt aus Kraft \(F\) und Hebelarm \(a\) wird auch als Drehmoment \(M\) bezeichnet: \(M=F\cdot a\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Beim einseitigen Hebel greifen Kräfte nur auf eine Seite der Drehachse an, z.B. am Unterarm oder an einem Schraubenschlüssel.
  • Ein einseitiger Hebel ist im Gleichgewicht, wenn die Summe der Produkte \(F\cdot a\) aller wirkenden Kräfte gleich null ist.
  • Das Produkt aus Kraft \(F\) und Hebelarm \(a\) wird auch als Drehmoment \(M\) bezeichnet: \(M=F\cdot a\).

Zum Artikel Zu den Aufgaben

Wellrad

Grundwissen

  • Ein Wellrad kann physikalisch als Hebel aufgefasst werden.
  • Im Gleichgewichtsfall gilt am Wellrad \(F_1\cdot r_1=F_2\cdot r_2\).
  • Die genaue Richtung der Kraft spielt beim Wellrad nur eine untergeordnete Rolle, der Hebelarm entspricht immer dem Radius des Rades.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ein Wellrad kann physikalisch als Hebel aufgefasst werden.
  • Im Gleichgewichtsfall gilt am Wellrad \(F_1\cdot r_1=F_2\cdot r_2\).
  • Die genaue Richtung der Kraft spielt beim Wellrad nur eine untergeordnete Rolle, der Hebelarm entspricht immer dem Radius des Rades.

Zum Artikel Zu den Aufgaben

Zentraler unelastischer Stoß

Grundwissen

  • Beim unelastischen Stoß bleibt lediglich der Impuls erhalten.
  • Ein Teil der Bewegungsenergie wird beim Stoß in Wärme oder Verformung umgewandelt.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Beim unelastischen Stoß bleibt lediglich der Impuls erhalten.
  • Ein Teil der Bewegungsenergie wird beim Stoß in Wärme oder Verformung umgewandelt.

Zum Artikel Zu den Aufgaben

Rückstoß

Grundwissen

  • Bei einem Rückstoß ist die kinetische Energie nach dem Stoß größer als vor dem Stoß
  • Dies ist möglich, wenn bspw. innere Energie durch eine chemische Reaktion frei wird.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei einem Rückstoß ist die kinetische Energie nach dem Stoß größer als vor dem Stoß
  • Dies ist möglich, wenn bspw. innere Energie durch eine chemische Reaktion frei wird.

Zum Artikel Zu den Aufgaben

Kräfte an der schiefen Ebene (rechnerisch)

Grundwissen

Überlegungen am rechtwinkligen Dreieck ermöglichen eine rechnerische Addition bzw. Zerlegung von Kräften - insbesondere auch an der schiefen Ebene.

Für den Betrag \(F_{\rm{G,\parallel}}\) der parallel zur Ebene wirkende Hangabtriebskraft gilt \(F_{\rm{G,\parallel}}=F_{\rm G}\cdot \frac{h}{l}=F_{\rm G}\cdot \sin(\alpha)\).

Für den Betrag \(F_{\rm{G,\bot}}\) der senkrecht zur Ebene wirkende Normalkomponente der Gewichtskraft gilt \(F_{\rm{G,\bot}}=F_{\rm G}\cdot \frac{b}{l}=F_{\rm G}\cdot \cos(\alpha)\).

Zum Artikel Zu den Aufgaben
Grundwissen

Überlegungen am rechtwinkligen Dreieck ermöglichen eine rechnerische Addition bzw. Zerlegung von Kräften - insbesondere auch an der schiefen Ebene.

Für den Betrag \(F_{\rm{G,\parallel}}\) der parallel zur Ebene wirkende Hangabtriebskraft gilt \(F_{\rm{G,\parallel}}=F_{\rm G}\cdot \frac{h}{l}=F_{\rm G}\cdot \sin(\alpha)\).

Für den Betrag \(F_{\rm{G,\bot}}\) der senkrecht zur Ebene wirkende Normalkomponente der Gewichtskraft gilt \(F_{\rm{G,\bot}}=F_{\rm G}\cdot \frac{b}{l}=F_{\rm G}\cdot \cos(\alpha)\).

Zum Artikel Zu den Aufgaben

Blattfederpendel stehend

Ausblick

Ein Körper der Masse \(m\), der an einer stehenden Blattfeder der Länge \(l\) mit der Federkonstante \(D\) mit kleiner Auslenkung pendelt, schwingt harmonisch mit der Zeit-Ort-Funktion \(x(t) = \hat x \cdot \cos \left( {\omega \cdot t} \right)\) mit \(\omega = \sqrt {\frac{D}{m} - \frac{g}{l}}\).

Die Schwingungsdauer berechnet sich durch \(T = \frac{{2 \cdot \pi }}{{\sqrt { \frac{D}{m} - \frac{g}{l} } }}\).

Zum Artikel
Ausblick

Ein Körper der Masse \(m\), der an einer stehenden Blattfeder der Länge \(l\) mit der Federkonstante \(D\) mit kleiner Auslenkung pendelt, schwingt harmonisch mit der Zeit-Ort-Funktion \(x(t) = \hat x \cdot \cos \left( {\omega \cdot t} \right)\) mit \(\omega = \sqrt {\frac{D}{m} - \frac{g}{l}}\).

Die Schwingungsdauer berechnet sich durch \(T = \frac{{2 \cdot \pi }}{{\sqrt { \frac{D}{m} - \frac{g}{l} } }}\).

Zum Artikel Zu den Aufgaben

Schwingende Boje

Ausblick

Eine schwingende Boje mit der Dichte \(\rho_{\rm{B}}\) und der Länge \(L\) schwingt im Wasser (Dichte \(\rho_{\rm{W}}\)) harmonisch mit der Zeit-Ort-Funktion\[y(t) = {y_0} \cdot \cos \left( {\sqrt {\frac{{{\rho _{\rm{W}}} \cdot g}}{{{\rho _{\rm{B}}} \cdot L}}}  \cdot t} \right)\]

Die Schwingungsdauer berechnet sich durch \(T = 2\pi \cdot \sqrt {\frac{\rho _{\rm{B}} \cdot L}{\rho _{\rm{W}} \cdot g}}\).

Zum Artikel
Ausblick

Eine schwingende Boje mit der Dichte \(\rho_{\rm{B}}\) und der Länge \(L\) schwingt im Wasser (Dichte \(\rho_{\rm{W}}\)) harmonisch mit der Zeit-Ort-Funktion\[y(t) = {y_0} \cdot \cos \left( {\sqrt {\frac{{{\rho _{\rm{W}}} \cdot g}}{{{\rho _{\rm{B}}} \cdot L}}}  \cdot t} \right)\]

Die Schwingungsdauer berechnet sich durch \(T = 2\pi \cdot \sqrt {\frac{\rho _{\rm{B}} \cdot L}{\rho _{\rm{W}} \cdot g}}\).

Zum Artikel Zu den Aufgaben

Blattfederpendel hängend

Ausblick

Ein Körper der Masse \(m\), der an einer hängenden Blattfeder der Länge \(l\) mit der Federkonstante \(D\) mit kleiner Auslenkung pendelt, schwingt harmonisch mit der Zeit-Ort-Funktion \(x(t) = \hat x \cdot \cos \left( {\omega \cdot t} \right)\) mit \(\omega = \sqrt {\frac{D}{m} + \frac{g}{l}}\).

Die Schwingungsdauer berechnet sich durch \(T = \frac{{2 \cdot \pi }}{{\sqrt { \frac{D}{m} + \frac{g}{l} } }}\).

Zum Artikel
Ausblick

Ein Körper der Masse \(m\), der an einer hängenden Blattfeder der Länge \(l\) mit der Federkonstante \(D\) mit kleiner Auslenkung pendelt, schwingt harmonisch mit der Zeit-Ort-Funktion \(x(t) = \hat x \cdot \cos \left( {\omega \cdot t} \right)\) mit \(\omega = \sqrt {\frac{D}{m} + \frac{g}{l}}\).

Die Schwingungsdauer berechnet sich durch \(T = \frac{{2 \cdot \pi }}{{\sqrt { \frac{D}{m} + \frac{g}{l} } }}\).

Zum Artikel Zu den Aufgaben

Gravitationsfeld (Animation)

Download ( Simulation )

Die Animation zeigt die stärker werdende Homogenität des Gravitationsfeldes bei der Annäherung an die Erdoberfläche.

Zum Download
Download ( Simulation )

Die Animation zeigt die stärker werdende Homogenität des Gravitationsfeldes bei der Annäherung an die Erdoberfläche.

Zum Download

Doppeltes Federpendel (Animation)

Download ( Simulation )

Die Animation zeigt die Bewegung eines doppelten Federpendels und einige Größen, die zur Beschreibung der Bewegung wichtig sind.

Zum Download
Download ( Simulation )

Die Animation zeigt die Bewegung eines doppelten Federpendels und einige Größen, die zur Beschreibung der Bewegung wichtig sind.

Zum Download

Doppeltes Federpendel

Ausblick

  • Ein doppeltes Federpendel mit einem Pendelkörper der Masse \(m\) und zwei Federn mit der gleichen Federkonstante \(D\) schwingt harmonisch mit der Zeit-Ort-Funktion \(x(t) = {x_0} \cdot \cos \left( {{\omega _0} \cdot t} \right)\; {\rm{mit}}\;{\omega _0} = \sqrt {\frac{2 \cdot D}{m}} \)
  • Die Schwingungsdauer berechnet sich durch \(T = 2\pi \cdot \sqrt {\frac{m}{2 \cdot D}}\).

Zum Artikel
Ausblick

  • Ein doppeltes Federpendel mit einem Pendelkörper der Masse \(m\) und zwei Federn mit der gleichen Federkonstante \(D\) schwingt harmonisch mit der Zeit-Ort-Funktion \(x(t) = {x_0} \cdot \cos \left( {{\omega _0} \cdot t} \right)\; {\rm{mit}}\;{\omega _0} = \sqrt {\frac{2 \cdot D}{m}} \)
  • Die Schwingungsdauer berechnet sich durch \(T = 2\pi \cdot \sqrt {\frac{m}{2 \cdot D}}\).

Zum Artikel Zu den Aufgaben

Autoscooter (CK-12-Simulation)

Download ( Simulation )

Die Simulation wird zur Verfügung gestellt von https://www.ck12.org. https://www.ck12.org Lizenz:…

Zum Download
Download ( Simulation )

Die Simulation wird zur Verfügung gestellt von https://www.ck12.org. https://www.ck12.org Lizenz:…

Zum Download

Fahrstuhl (CK-12-Simulation)

Download ( Simulation )

Die Simulation wird zur Verfügung gestellt von https://www.ck12.org. https://www.ck12.org Lizenz:…

Zum Download
Download ( Simulation )

Die Simulation wird zur Verfügung gestellt von https://www.ck12.org. https://www.ck12.org Lizenz:…

Zum Download

Raketenphysik mit der Tabellenkalkulation

Ausblick
Ausblick

Trampolin (CK-12-Simulation)

Download ( Simulation )

Die Simulation wird zur Verfügung gestellt von https://www.ck12.org. https://www.ck12.org Lizenz:…

Zum Download
Download ( Simulation )

Die Simulation wird zur Verfügung gestellt von https://www.ck12.org. https://www.ck12.org Lizenz:…

Zum Download

Gravitationsfeld einer Punktmasse (Simulation)

Download ( Simulation )

Die Simulation zeigt die Darstellung des Gravitationsfeldes einer punktförmigen Masse durch Feldstärkevektoren.

Zum Download
Download ( Simulation )

Die Simulation zeigt die Darstellung des Gravitationsfeldes einer punktförmigen Masse durch Feldstärkevektoren.

Zum Download

Gravitationsfeld an der Erdoberfläche (Simulation)

Download ( Simulation )

Die Simulation zeigt die Darstellung des Gravitationsfeldes an der Erdoberfläche durch Feldstärkevektoren.

Zum Download
Download ( Simulation )

Die Simulation zeigt die Darstellung des Gravitationsfeldes an der Erdoberfläche durch Feldstärkevektoren.

Zum Download

Gravitationskraft zwischen zwei Punktmassen (Simulation)

Download ( Simulation )

Die Simulation zeigt die Gravitationskraft zwischen zwei Punktmassen.

Zum Download
Download ( Simulation )

Die Simulation zeigt die Gravitationskraft zwischen zwei Punktmassen.

Zum Download

Gravitationskraft zwischen der Erdoberfläche und einer Punktmasse (Simulation)

Download ( Simulation )

Die Simulation zeigt die Gravitationskraft zwischen der Erdoberfläche und einer Punktmasse.

Zum Download
Download ( Simulation )

Die Simulation zeigt die Gravitationskraft zwischen der Erdoberfläche und einer Punktmasse.

Zum Download