Direkt zum Inhalt
Suchergebnisse 511 - 540 von 555

Kombinationen von Widerständen, Spulen und Kondensatoren (Simulation)

Versuche

Mit dieser Simulation lassen sich aus (ohmschen) Widerständen, idealen Induktionsspulen (ohne Widerstand) und Kondensatoren einfache Wechselstromkreise aufbauen.

Zum Artikel
Versuche

Mit dieser Simulation lassen sich aus (ohmschen) Widerständen, idealen Induktionsspulen (ohne Widerstand) und Kondensatoren einfache Wechselstromkreise aufbauen.

Zum Artikel Zu den Aufgaben

Drei Grundversuche zur elektromagnetischen Induktion (Simulationen)

Versuche

  • Anhand von drei grundlegenden Versuchen kannst du erkennen, wann elektromagnetische Induktion auftritt.

Zum Artikel
Versuche

  • Anhand von drei grundlegenden Versuchen kannst du erkennen, wann elektromagnetische Induktion auftritt.

Zum Artikel Zu den Aufgaben

Induktion durch Änderung der magnetischen Flussdichte (Simulation)

Versuche

  • Die Simulation ermöglicht die Untersuchung der Abhängigkeit der Induktionsspannung von der Änderung der magnetischen Flussdichte.

Zum Artikel
Versuche

  • Die Simulation ermöglicht die Untersuchung der Abhängigkeit der Induktionsspannung von der Änderung der magnetischen Flussdichte.

Zum Artikel Zu den Aufgaben

Induktion durch Änderung des Flächeninhalts (Simulation)

Versuche

  • Die Simulation ermöglicht die Untersuchung der Abhängigkeit der Induktionsspannung von der Änderung des Flächeninhalts.

Zum Artikel
Versuche

  • Die Simulation ermöglicht die Untersuchung der Abhängigkeit der Induktionsspannung von der Änderung des Flächeninhalts.

Zum Artikel Zu den Aufgaben

Induktion durch Änderung der Winkelweite (Simulation)

Versuche

  • Die Simulation ermöglicht die Untersuchung der Abhängigkeit der Induktionsspannung von der Änderung der Winkelweite.

Zum Artikel
Versuche

  • Die Simulation ermöglicht die Untersuchung der Abhängigkeit der Induktionsspannung von der Änderung der Winkelweite.

Zum Artikel Zu den Aufgaben

Induktion durch Änderung der magnetischen Flussdichte

Grundwissen

In einer Induktionsanordnung gelten folgende Bedingungen:

  • die Richtung des magnetischen Feldvektors \(\vec B\) des homogenen magnetischen Feldes ist konstant
  • der Flächenvektor \(\vec A\) der (Teil-)Fläche der Leiterschleife oder der Spule mit Windungszahl \(N\), die sich im magnetischen Feld befindet, ist konstant
  • die Weite \(\varphi\) des Winkels zwischen dem Feldvektor \(\vec B\) und dem Flächenvektor \(\vec A\) ist damit ebenfalls konstant.

Wenn sich die magnetische Flussdichte \(B\) mit der Änderungsrate \(\frac{dB}{dt}\) ändert, dann berechnet sich die Induktionsspannung \(U_{\rm{i}}\) durch \(U_{\rm{i}}\left(t\right) =  - N \cdot \frac{dB}{dt} \cdot A \cdot \cos\left(\varphi\right)\).

Zum Artikel Zu den Aufgaben
Grundwissen

In einer Induktionsanordnung gelten folgende Bedingungen:

  • die Richtung des magnetischen Feldvektors \(\vec B\) des homogenen magnetischen Feldes ist konstant
  • der Flächenvektor \(\vec A\) der (Teil-)Fläche der Leiterschleife oder der Spule mit Windungszahl \(N\), die sich im magnetischen Feld befindet, ist konstant
  • die Weite \(\varphi\) des Winkels zwischen dem Feldvektor \(\vec B\) und dem Flächenvektor \(\vec A\) ist damit ebenfalls konstant.

Wenn sich die magnetische Flussdichte \(B\) mit der Änderungsrate \(\frac{dB}{dt}\) ändert, dann berechnet sich die Induktionsspannung \(U_{\rm{i}}\) durch \(U_{\rm{i}}\left(t\right) =  - N \cdot \frac{dB}{dt} \cdot A \cdot \cos\left(\varphi\right)\).

Zum Artikel Zu den Aufgaben

Induktion durch Änderung des Flächeninhalts

Grundwissen

In einer Induktionsanordnung gelten folgende Bedingungen:

  • der Feldvektor \(\vec B\) (und damit die Richtung, die Orientierung und die Flussdichte) des homogenen magnetischen Feldes ist konstant
  • die Richtung und die Orientierung des Flächenvektors \(\vec A\) des Teils der Leiterschleife, der vom magnetische Feld durchsetzt wird, sind konstant
  • die Weite \(\varphi\) des Winkels zwischen Flächenvektor \(\vec A\) und Feldvektor \(\vec B\) ist konstant

Wenn sich der Betrag \(A\), d.h. der Inhalt der Fläche des Teils der Leiterschleife oder Spule mit Windungszahl \(N\), die vom magnetischen Feld durchsetzt wird, mit der Änderungsrate \(\frac{dA}{dt}\) ändert, dann berechnet sich die Induktionsspannung \(U_{\rm{i}}\) durch \(U_{\rm{i}} =  - N \cdot B \cdot \frac{dA}{dt} \cdot \cos\left(\varphi\right)\).

Zum Artikel Zu den Aufgaben
Grundwissen

In einer Induktionsanordnung gelten folgende Bedingungen:

  • der Feldvektor \(\vec B\) (und damit die Richtung, die Orientierung und die Flussdichte) des homogenen magnetischen Feldes ist konstant
  • die Richtung und die Orientierung des Flächenvektors \(\vec A\) des Teils der Leiterschleife, der vom magnetische Feld durchsetzt wird, sind konstant
  • die Weite \(\varphi\) des Winkels zwischen Flächenvektor \(\vec A\) und Feldvektor \(\vec B\) ist konstant

Wenn sich der Betrag \(A\), d.h. der Inhalt der Fläche des Teils der Leiterschleife oder Spule mit Windungszahl \(N\), die vom magnetischen Feld durchsetzt wird, mit der Änderungsrate \(\frac{dA}{dt}\) ändert, dann berechnet sich die Induktionsspannung \(U_{\rm{i}}\) durch \(U_{\rm{i}} =  - N \cdot B \cdot \frac{dA}{dt} \cdot \cos\left(\varphi\right)\).

Zum Artikel Zu den Aufgaben

Induktion durch Änderung der Winkelweite

Grundwissen

In einer Induktionsanordnung gelten folgende Bedingungen:

  • die magnetische Flussdichte \(B\) des homogenen magnetischen Feldes ist konstant
  • der Flächeninhalt \(A\) der (Teil-)Fläche der Leiterschleife oder Spule mit der Windungszahl \(N\), die sich im magnetischen Feld befindet, ist konstant

Wenn sich die Richtung oder die Orientierung des Feldvektors \(\vec B\) oder des Flächenvektors \(\vec A\) und damit die Weite \(\varphi\) des Winkels zwischen dem Feldvektor \(\vec B\) und dem Flächenvektor \(\vec A\) mit der Änderungsrate \(\frac{d \varphi}{dt}\) ändert, dann berechnet sich die Induktionsspannung \(U_{\rm{i}}\) durch \(U_{\rm{i}} =  N \cdot B \cdot A \cdot \frac{d \varphi}{dt} \cdot \sin\left(\varphi\right)\).

Zum Artikel Zu den Aufgaben
Grundwissen

In einer Induktionsanordnung gelten folgende Bedingungen:

  • die magnetische Flussdichte \(B\) des homogenen magnetischen Feldes ist konstant
  • der Flächeninhalt \(A\) der (Teil-)Fläche der Leiterschleife oder Spule mit der Windungszahl \(N\), die sich im magnetischen Feld befindet, ist konstant

Wenn sich die Richtung oder die Orientierung des Feldvektors \(\vec B\) oder des Flächenvektors \(\vec A\) und damit die Weite \(\varphi\) des Winkels zwischen dem Feldvektor \(\vec B\) und dem Flächenvektor \(\vec A\) mit der Änderungsrate \(\frac{d \varphi}{dt}\) ändert, dann berechnet sich die Induktionsspannung \(U_{\rm{i}}\) durch \(U_{\rm{i}} =  N \cdot B \cdot A \cdot \frac{d \varphi}{dt} \cdot \sin\left(\varphi\right)\).

Zum Artikel Zu den Aufgaben

Induktionserscheinungen

Grundwissen

Induktionsspannungen \(U_{\rm{i}}\) kann man beobachten, wenn sich in einer Induktionsanordnung (ein magnetisches Feld und eine Leiterschleife mit angeschlossenem Spannungsmesser) eine der folgenden Größe ändert:

  • die magnetische Flussdichte \(B\) des magnetischen Feldes
  • der Inhalt \(A\) der Fläche der Leiterschleife, die vom magnetischen Feld durchsetzt wird
  • die Weite \(\varphi\) des Winkels zwischen dem magnetischem Feld und der Leiterschleife

Zum Artikel
Grundwissen

Induktionsspannungen \(U_{\rm{i}}\) kann man beobachten, wenn sich in einer Induktionsanordnung (ein magnetisches Feld und eine Leiterschleife mit angeschlossenem Spannungsmesser) eine der folgenden Größe ändert:

  • die magnetische Flussdichte \(B\) des magnetischen Feldes
  • der Inhalt \(A\) der Fläche der Leiterschleife, die vom magnetischen Feld durchsetzt wird
  • die Weite \(\varphi\) des Winkels zwischen dem magnetischem Feld und der Leiterschleife

Zum Artikel Zu den Aufgaben

Selbstinduktion (Messwerterfassung)

Versuche

  • Nachweis des allmählichen Stromanstiegs beim Anlegen einer Spannung an eine Spule.
  • Analyse der Selbstinduktion beim Ein- und Ausschalten.
  • Verdeutlichung des Einflusses des Widerstandes auf Ausschaltstrom und Induktionsspannung.

Zum Artikel
Versuche

  • Nachweis des allmählichen Stromanstiegs beim Anlegen einer Spannung an eine Spule.
  • Analyse der Selbstinduktion beim Ein- und Ausschalten.
  • Verdeutlichung des Einflusses des Widerstandes auf Ausschaltstrom und Induktionsspannung.

Zum Artikel Zu den Aufgaben

Größen zur Beschreibung einer (elektromagnetischen) Welle

Grundwissen

  • Amplitude \(\hat E\), Schwingungsdauer \(T\) bzw. Frequenz \(f\) und Intensität \(I\) sind zentrale Größen zur Beschreibung einer elektromagnetischen Welle.
  • Für die Wellenlänge gilt \(\lambda=\frac{c}{f}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Amplitude \(\hat E\), Schwingungsdauer \(T\) bzw. Frequenz \(f\) und Intensität \(I\) sind zentrale Größen zur Beschreibung einer elektromagnetischen Welle.
  • Für die Wellenlänge gilt \(\lambda=\frac{c}{f}\).

Zum Artikel Zu den Aufgaben

Aktuelle Charts und Grafiken zur Stromerzeugung, installierten Leistung usw.

Weblink

Informative, aktuelle und übersichtliche interaktive Grafiken des Frauenhofer Instituts rund um die Stromerzeugung in Deutschland. Auch die zeitliche Entwicklung verschiedener Energieträger kann mit Hilfe der Grafiker sehr gut deutlich gemacht werden.

Zum externen Weblink
Weblink

Informative, aktuelle und übersichtliche interaktive Grafiken des Frauenhofer Instituts rund um die Stromerzeugung in Deutschland. Auch die zeitliche Entwicklung verschiedener Energieträger kann mit Hilfe der Grafiker sehr gut deutlich gemacht werden.

Zum externen Weblink

Spezifischer Widerstand

Grundwissen

  • Der spezifische Widerstand \(\rho\) ist eine Materialkonstante des verwendeten Materials.
  • Für den spezifische Widerstand gilt \(\rho  = \frac{{R \cdot A}}{l}\), der Widerstand eines Leiters berechnet man mittels \(R = \rho  \cdot \frac{l}{A}\).
  • Gute Leiter wie Silber oder Kupfer haben einen geringen spezifischen Widerstand, Isolatoren einen sehr hohen spezifischen Widerstand.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Der spezifische Widerstand \(\rho\) ist eine Materialkonstante des verwendeten Materials.
  • Für den spezifische Widerstand gilt \(\rho  = \frac{{R \cdot A}}{l}\), der Widerstand eines Leiters berechnet man mittels \(R = \rho  \cdot \frac{l}{A}\).
  • Gute Leiter wie Silber oder Kupfer haben einen geringen spezifischen Widerstand, Isolatoren einen sehr hohen spezifischen Widerstand.

Zum Artikel Zu den Aufgaben

Schwingkreis mit Messwerterfassung

Versuche

  • Untersuchung von Spannungs- und Stromverlauf beim Schwingkreis
  • Untersuchung des Einflusses der Kondensatorkapazität auf die Schwingungsfrequenz

Zum Artikel
Versuche

  • Untersuchung von Spannungs- und Stromverlauf beim Schwingkreis
  • Untersuchung des Einflusses der Kondensatorkapazität auf die Schwingungsfrequenz

Zum Artikel Zu den Aufgaben

Gedämpfter Schwingkreis mit Messwerterfassung

Versuche

  • Veranschaulichung des Einflusses des Widerstandes im Schwingkreis auf die Abnahme der Schwingung
  • Demonstration von Kriechfall bzw. aperiodischem Grenzfall

Zum Artikel
Versuche

  • Veranschaulichung des Einflusses des Widerstandes im Schwingkreis auf die Abnahme der Schwingung
  • Demonstration von Kriechfall bzw. aperiodischem Grenzfall

Zum Artikel Zu den Aufgaben

Ausführlicher Unterrichtsgang zu Halbleitern und Elektronik

Weblink

Ausführliche Beschreibung eines Unterrichtsganges zu Halbleitern und Elektronik. Dabei werden Dioden, Transistoren und Sensoren thematisiert. Auch werden viele passende Experimente vorgeschlagen und erläutert und es steht Material zum Download und zum Anpassen bereit.

Zum externen Weblink
Weblink

Ausführliche Beschreibung eines Unterrichtsganges zu Halbleitern und Elektronik. Dabei werden Dioden, Transistoren und Sensoren thematisiert. Auch werden viele passende Experimente vorgeschlagen und erläutert und es steht Material zum Download und zum Anpassen bereit.

Zum externen Weblink

Luka und das Licht der Zukunft, Band 1

Weblink

Tolle Broschüre Rund um das Thema Licht, speziell der LED. Unterrichtsprojekte, z.B. Bau einfacher LED Lichter. Für Kinder bis 13 Jahren geeignet. Download als pdf auf der o.g. Seite.

Zum externen Weblink
Weblink

Tolle Broschüre Rund um das Thema Licht, speziell der LED. Unterrichtsprojekte, z.B. Bau einfacher LED Lichter. Für Kinder bis 13 Jahren geeignet. Download als pdf auf der o.g. Seite.

Zum externen Weblink

Vorgänge am pn-Übergang im Stop-Motion-Video

Weblink

Das Video von Prof. Dr. Stefan Heusler, Uni Münster erläutert eindrucksvoll und anschaulich die Vorgänge am PN-Übergang von Halbleitern.

Zur Übersicht Zum externen Weblink
Weblink

Das Video von Prof. Dr. Stefan Heusler, Uni Münster erläutert eindrucksvoll und anschaulich die Vorgänge am PN-Übergang von Halbleitern.

Zur Übersicht Zum externen Weblink

Der Transistor-Effekt

Grundwissen

  • Wenn beim npn-Transistor die Basis genügend positiv gegenüber dem Emitter ist, kann ein Strom über die Kollektor-Emitter-Strecke fließen (Transistor-Effekt).
  • Mithilfe eines kleinen Basisstroms kann ein großer Stromfluss zwischen Emitter und Kollektor gesteuert werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Wenn beim npn-Transistor die Basis genügend positiv gegenüber dem Emitter ist, kann ein Strom über die Kollektor-Emitter-Strecke fließen (Transistor-Effekt).
  • Mithilfe eines kleinen Basisstroms kann ein großer Stromfluss zwischen Emitter und Kollektor gesteuert werden.

Zum Artikel Zu den Aufgaben

Transistor-Formalitäten

Grundwissen

  • Einfache Transistoren bestehen drei abwechselnd p- und n-dotierten Halbleiterschichten.
  • Man unterscheidet zwischen npn-Transistor und pnp-Transistor - meistens behandelt man jedoch npn-Transistoren.
  • Die drei Teile nennt man Kollektor (C), Basis (B) und Emitter (E).
  • Es gibt drei Schaltungsarten eines Transistors: Emitterschaltung, Kollektorschaltung und Basisschaltung. In der Praxis spielt die Emitterschaltung eine große Rolle.

Zum Artikel
Grundwissen

  • Einfache Transistoren bestehen drei abwechselnd p- und n-dotierten Halbleiterschichten.
  • Man unterscheidet zwischen npn-Transistor und pnp-Transistor - meistens behandelt man jedoch npn-Transistoren.
  • Die drei Teile nennt man Kollektor (C), Basis (B) und Emitter (E).
  • Es gibt drei Schaltungsarten eines Transistors: Emitterschaltung, Kollektorschaltung und Basisschaltung. In der Praxis spielt die Emitterschaltung eine große Rolle.

Zum Artikel Zu den Aufgaben

Technik der Dotierung

Grundwissen

  • Halbleiter werden meist durch ein Diffusionsverfahren oder durch Implantation (Einschuss) mit Fremdatomen dotiert.

Zum Artikel
Grundwissen

  • Halbleiter werden meist durch ein Diffusionsverfahren oder durch Implantation (Einschuss) mit Fremdatomen dotiert.

Zum Artikel Zu den Aufgaben

Eigenleitung im Siliziumkristall

Grundwissen

  • Bei tiefen Temperaturen sind Halbleiter Isolatoren.
  • Bei Energiezufuhr z.B. durch Erwärmung werden Elektronen aus ihren Paarbindungen gelöst - es entstehen Leitungselektronen und Löcher.
  • Legt man eine äußere Spannung an, kommt es zur sogn Eigenleitung.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei tiefen Temperaturen sind Halbleiter Isolatoren.
  • Bei Energiezufuhr z.B. durch Erwärmung werden Elektronen aus ihren Paarbindungen gelöst - es entstehen Leitungselektronen und Löcher.
  • Legt man eine äußere Spannung an, kommt es zur sogn Eigenleitung.

Zum Artikel Zu den Aufgaben

Dotierte Halbleiter

Grundwissen

  • Man unterscheidet zwischen n-dotierten und p-dotierten Halbleitern (kurz n- bzw. p-Halbleiter).
  • Bei n-Halbleitern entstehen frei bewegliche Elektronen auf einem Untergrund positiver, ortsfester Atomrümpfe.
  • Bei p-Halbleitern entstehen frei bewegliche "Löcher" auf einem Untergrund negativer, ortsfester Atomrümpfe.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Man unterscheidet zwischen n-dotierten und p-dotierten Halbleitern (kurz n- bzw. p-Halbleiter).
  • Bei n-Halbleitern entstehen frei bewegliche Elektronen auf einem Untergrund positiver, ortsfester Atomrümpfe.
  • Bei p-Halbleitern entstehen frei bewegliche "Löcher" auf einem Untergrund negativer, ortsfester Atomrümpfe.

Zum Artikel Zu den Aufgaben

Stromrichtige und Spannungsrichtige Messung

Grundwissen

  • Messgeräte können die genaue Messung von Größen beeinflussen.
  • Je nachdem, ob die die Stromstärke \(I\) oder die Spannung \(U\) besonders genau messen möchtest, musst du deine Messgeräte schalten.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Messgeräte können die genaue Messung von Größen beeinflussen.
  • Je nachdem, ob die die Stromstärke \(I\) oder die Spannung \(U\) besonders genau messen möchtest, musst du deine Messgeräte schalten.

Zum Artikel Zu den Aufgaben

p-n-Übergang - Halbleiterdiode

Grundwissen

 

Joachim Herz Stiftung
  • Halbleiterdioden bestehen aus zwei Schichten: einem p-Halbleiter und einem n-Halbleiter
  • Dioden besitzen eine Durchlassrichtung und eine Sperrrichtung
  • Liegt der Pluspol an der p-Schicht, so ist die Diode in Durchlassrichtung geschaltet

Zum Artikel Zu den Aufgaben
Grundwissen

 

Joachim Herz Stiftung
  • Halbleiterdioden bestehen aus zwei Schichten: einem p-Halbleiter und einem n-Halbleiter
  • Dioden besitzen eine Durchlassrichtung und eine Sperrrichtung
  • Liegt der Pluspol an der p-Schicht, so ist die Diode in Durchlassrichtung geschaltet

Zum Artikel Zu den Aufgaben

Leuchtdioden (LED) - Einführung

Grundwissen

  • Leuchtdioden sind Halbleiterdioden, die Licht , Infrarotstrahlung oder Ultraviolettstrahlung aussenden.
  • LEDs müssen in Durchlassrichtung geschaltet werden, damit sie leuchten.
  • LEDs sind effiziente Lichtquellen mit geringem Energiebedarf.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Leuchtdioden sind Halbleiterdioden, die Licht , Infrarotstrahlung oder Ultraviolettstrahlung aussenden.
  • LEDs müssen in Durchlassrichtung geschaltet werden, damit sie leuchten.
  • LEDs sind effiziente Lichtquellen mit geringem Energiebedarf.

Zum Artikel Zu den Aufgaben

Silizium-Solarzellen

Grundwissen

  • Klassische Silizium-Solarzellen bestehen aus einer n-dotierten und einer p-dotierten Schicht. Am Übergang bildet sich eine sog. Raumladungszone.
  • Einfallendes Licht löst in dieser Raumladungszone Elektronen von Atomen (innerer Fotoeffekt).
  • Der Wirkungsgrad von Solarzellen liegt aktuell bei 13% - 48%.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Klassische Silizium-Solarzellen bestehen aus einer n-dotierten und einer p-dotierten Schicht. Am Übergang bildet sich eine sog. Raumladungszone.
  • Einfallendes Licht löst in dieser Raumladungszone Elektronen von Atomen (innerer Fotoeffekt).
  • Der Wirkungsgrad von Solarzellen liegt aktuell bei 13% - 48%.

Zum Artikel Zu den Aufgaben

Der Transistor als Verstärker

Versuche

Mit diesem Versuch soll demonstriert werden, dass ein Transistor Signale verstärken kann.

Zum Artikel
Versuche

Mit diesem Versuch soll demonstriert werden, dass ein Transistor Signale verstärken kann.

Zum Artikel Zu den Aufgaben

Der Transistor als Schalter

Versuche

Mit diesem Versuch wird nachgewiesen, dass ein Transistor als Schalter dienen kann.

Zum Artikel
Versuche

Mit diesem Versuch wird nachgewiesen, dass ein Transistor als Schalter dienen kann.

Zum Artikel Zu den Aufgaben

Video zum Transistor

Versuche
Versuche