Direkt zum Inhalt
Suchergebnisse 151 - 174 von 174

Resonanzabsorption und Resonanzfluoreszenz bei Molekülen (Simulation von PhET)

Versuche

  • Darstellung der quantenhaften Absorption von Photonen durch Moleküle
  • Darstellung der unterschiedlichen Anregungsformen der Moleküle bis hin zur Ionisation
  • Darstellung der Übereinstimmung der Energie der absorbierten und der emittierten Photonen

Zum Artikel
Versuche

  • Darstellung der quantenhaften Absorption von Photonen durch Moleküle
  • Darstellung der unterschiedlichen Anregungsformen der Moleküle bis hin zur Ionisation
  • Darstellung der Übereinstimmung der Energie der absorbierten und der emittierten Photonen

Zum Artikel Zu den Aufgaben

Körperfarben

Versuche
Versuche

Linearer Potentialtopf - Schrödingergleichung

Ausblick

  • Eine Lösung der zeitabhängigen Schrödigergleichung mit Schulmathematik ist kaum möglich.
  • Die zeitunabhängige, eindimensionale Schrödingergleichung kann am Modell des linearen Potentialtopfs mathematisch hergeleitet werden.
  • Wichtig ist dabei der Einbezug der Randbedingungen.

Zum Artikel
Ausblick

  • Eine Lösung der zeitabhängigen Schrödigergleichung mit Schulmathematik ist kaum möglich.
  • Die zeitunabhängige, eindimensionale Schrödingergleichung kann am Modell des linearen Potentialtopfs mathematisch hergeleitet werden.
  • Wichtig ist dabei der Einbezug der Randbedingungen.

Zum Artikel Zu den Aufgaben

Energiezustände im BOHRschen Atommodell

Grundwissen

  • Durch die Quantenbedingung von BOHR kann die Energie eines Atoms nur bestimmte Werte annehmen.
  • Die Energie, um Wasserstoff aus dem Grundzustand heraus zu ionisieren beträgt \(13{,}6\,\rm{eV}\) (Ionisierungsenergie).
  • Die Gesamtenergie eines Elektrons im Wasserstoffatom gilt \({E_{{\rm{ges}}{\rm{,n}}}} = - R_{\infty} \cdot h \cdot c \cdot \frac{1}{{{n^2}}}\), wobei \(R_{\infty}\) die Rydberg-Konstante ist.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Durch die Quantenbedingung von BOHR kann die Energie eines Atoms nur bestimmte Werte annehmen.
  • Die Energie, um Wasserstoff aus dem Grundzustand heraus zu ionisieren beträgt \(13{,}6\,\rm{eV}\) (Ionisierungsenergie).
  • Die Gesamtenergie eines Elektrons im Wasserstoffatom gilt \({E_{{\rm{ges}}{\rm{,n}}}} = - R_{\infty} \cdot h \cdot c \cdot \frac{1}{{{n^2}}}\), wobei \(R_{\infty}\) die Rydberg-Konstante ist.

Zum Artikel Zu den Aufgaben

Tripelspiegel

Ausblick
Ausblick

Anordnungen von FRESNEL und FRAUNHOFER

Ausblick
Ausblick

Funktion von LCD-Displays

Ausblick

  • LCD-Displays nutzen Polfilter und senden linear polarisiertes Licht aus.
  • Zwischen zwei gekreuzten Polfiltern befinden sich Flüssigkristalle, die je nach Ausrichtung die Polarisationsebene des Lichtes verändern.
  • Es gibt inzwischen viele verschiedene Bauformen von LCD-Displays

Zum Artikel
Ausblick

  • LCD-Displays nutzen Polfilter und senden linear polarisiertes Licht aus.
  • Zwischen zwei gekreuzten Polfiltern befinden sich Flüssigkristalle, die je nach Ausrichtung die Polarisationsebene des Lichtes verändern.
  • Es gibt inzwischen viele verschiedene Bauformen von LCD-Displays

Zum Artikel Zu den Aufgaben

Dampfmaschine von WATT

Ausblick
Ausblick

FRESNEL-Linse

Ausblick
Ausblick

Wärmestoff und Allgemeiner Energieerhaltungssatz

Geschichte
Geschichte

Quiz zur scheinbaren Bewegung von Gestirnen

Aufgabe ( Quiz )
Aufgabe ( Quiz )

Quiz zur Wärmeausdehnung

Aufgabe ( Quiz )
Aufgabe ( Quiz )

Bestimmung der PLANCK-Konstante (Abitur BY 2019 Ph12-1 A2)

Aufgabe ( Übungsaufgaben )

Am 20. Mai 2019 wurde das Ur-Kilogramm „in Rente geschickt“. Die Neudefinition des Kilogramms wurde auf die PLANCK-Konstante \(h\) zurückgeführt,…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Am 20. Mai 2019 wurde das Ur-Kilogramm „in Rente geschickt“. Die Neudefinition des Kilogramms wurde auf die PLANCK-Konstante \(h\) zurückgeführt,…

Zur Aufgabe

Quantenmechanische Systematisierung des Periodensystems

Grundwissen

  • Die Zustände der gebundenen Elektronen eines Atoms werden mit den Quantenzahlen beschrieben.
  • Es gibt vier unterschiedliche Quantenzahlen: Hauptquantenzahl \(n\), Nebenquantenzahl \(l\), magnetische Quantenzahl \(m\) und Spin-Quantenzahl \(s\).
  • Das PAULI-Prinzip besagt, dass in einem Atom niemals zwei Elektronen in allen vier Quantenzahlen übereinstimmen können.

Zum Artikel
Grundwissen

  • Die Zustände der gebundenen Elektronen eines Atoms werden mit den Quantenzahlen beschrieben.
  • Es gibt vier unterschiedliche Quantenzahlen: Hauptquantenzahl \(n\), Nebenquantenzahl \(l\), magnetische Quantenzahl \(m\) und Spin-Quantenzahl \(s\).
  • Das PAULI-Prinzip besagt, dass in einem Atom niemals zwei Elektronen in allen vier Quantenzahlen übereinstimmen können.

Zum Artikel Zu den Aufgaben