Direkt zum Inhalt
Suchergebnisse 61 - 70 von 70

Elektromotor

Grundwissen

  • Ein Elektromotor wandelt elektrische in mechanische Energie um.
  • Meist besteht eine Elektromotor aus einem äußeren, von den Statoren verursachten Magnetfeld, in dem sich ein Elektromagnet (Rotor) dreht.
  • Die Abstoßung gleichnamiger bzw. die Anziehung ungleichnamiger Magnetpole sorgt für die Bewegung des Rotors.
  • Der Kommutator sorgt für eine Umpolung des Rotors. Nur so bewegt sich der Motor kontinuierlich.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ein Elektromotor wandelt elektrische in mechanische Energie um.
  • Meist besteht eine Elektromotor aus einem äußeren, von den Statoren verursachten Magnetfeld, in dem sich ein Elektromagnet (Rotor) dreht.
  • Die Abstoßung gleichnamiger bzw. die Anziehung ungleichnamiger Magnetpole sorgt für die Bewegung des Rotors.
  • Der Kommutator sorgt für eine Umpolung des Rotors. Nur so bewegt sich der Motor kontinuierlich.

Zum Artikel Zu den Aufgaben

Induktionserscheinungen

Grundwissen

Induktionsspannungen \(U_{\rm{i}}\) kann man beobachten, wenn sich in einer Induktionsanordnung (ein magnetisches Feld und eine Leiterschleife mit angeschlossenem Spannungsmesser) eine der folgenden Größe ändert:

  • die magnetische Flussdichte \(B\) des magnetischen Feldes
  • der Inhalt \(A\) der Fläche der Leiterschleife, die vom magnetischen Feld durchsetzt wird
  • die Weite \(\varphi\) des Winkels zwischen dem magnetischem Feld und der Leiterschleife

Zum Artikel
Grundwissen

Induktionsspannungen \(U_{\rm{i}}\) kann man beobachten, wenn sich in einer Induktionsanordnung (ein magnetisches Feld und eine Leiterschleife mit angeschlossenem Spannungsmesser) eine der folgenden Größe ändert:

  • die magnetische Flussdichte \(B\) des magnetischen Feldes
  • der Inhalt \(A\) der Fläche der Leiterschleife, die vom magnetischen Feld durchsetzt wird
  • die Weite \(\varphi\) des Winkels zwischen dem magnetischem Feld und der Leiterschleife

Zum Artikel Zu den Aufgaben

Starke Wechselwirkung

Grundwissen

  • Der starken Wechselwirkung unterliegen nur Teilchen, die eine Farbladung besitzen, also auf Quarks. Es gibt 6 verschiedene Farbladungen: rot, grün, blau, anti-rot, anti-grün und anti-blau.
  • Die Botenteilchen der starken Wechselwirkung sind die acht Gluonen. Diese tragen selbst unterschiedliche Farbladungen.
  • Es gibt keine freien Quarks, sie finden sich immer in Zweier- oder Dreiergruppen.

Zum Artikel
Grundwissen

  • Der starken Wechselwirkung unterliegen nur Teilchen, die eine Farbladung besitzen, also auf Quarks. Es gibt 6 verschiedene Farbladungen: rot, grün, blau, anti-rot, anti-grün und anti-blau.
  • Die Botenteilchen der starken Wechselwirkung sind die acht Gluonen. Diese tragen selbst unterschiedliche Farbladungen.
  • Es gibt keine freien Quarks, sie finden sich immer in Zweier- oder Dreiergruppen.

Zum Artikel Zu den Aufgaben

COULOMB-Gesetz

Grundwissen

  • Alle geladenen Körper üben aufeinander Kräfte aus, die man als elektrische Kräfte bezeichnet.
  • Die Richtung dieser Kräfte verläuft auf der Verbindungsgerade der beiden Ladungsschwerpunkte, der Betrag dieser Kräfte ist (wegen des Wechselwirkungsgesetzes) gleich groß.
  • Die Kräfte sind bei gleichartigen Ladungen voneinander weg und bei verschiedenartigen Ladungen aufeinander zu gerichtet.
  • Der Betrag ist proportional zu beiden Ladungen und umgekehrt proportional zum Quadrat des Abstandes der beiden Ladungsschwerpunkte.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Alle geladenen Körper üben aufeinander Kräfte aus, die man als elektrische Kräfte bezeichnet.
  • Die Richtung dieser Kräfte verläuft auf der Verbindungsgerade der beiden Ladungsschwerpunkte, der Betrag dieser Kräfte ist (wegen des Wechselwirkungsgesetzes) gleich groß.
  • Die Kräfte sind bei gleichartigen Ladungen voneinander weg und bei verschiedenartigen Ladungen aufeinander zu gerichtet.
  • Der Betrag ist proportional zu beiden Ladungen und umgekehrt proportional zum Quadrat des Abstandes der beiden Ladungsschwerpunkte.

Zum Artikel Zu den Aufgaben

Energiebilanz beim Alpha-Zerfall

Grundwissen

  • Beim Alpha-Zerfall emittiert der Mutterkern \(\rm{X}\) ein \(\alpha\)-Teilchen (\(\rm{He}\)-Kern). Die Ordnungszahl des Tochterkerns \(\rm{Y}\) ist um \(2\), die Massenzahl um \(4\) kleiner als die des Mutterkerns.
  • Die Reaktionsgleichung lautet \(_{Z}^{A}{\rm{X}}\to\;_{Z-2}^{A-4}{\rm{Y}} +\;_{2}^{4}{\rm{He }}\)
  • Der \(Q\)-Wert berechnet sich mit Atommassen durch \(Q = \left[ m_{\rm{A}}\left( \rm{X} \right)-m_{\rm{A}}\left( \rm{Y} \right)-m_{\rm{A}}\left(_{2}^{4}{\rm{He }} \right) \right] \cdot c^2\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Beim Alpha-Zerfall emittiert der Mutterkern \(\rm{X}\) ein \(\alpha\)-Teilchen (\(\rm{He}\)-Kern). Die Ordnungszahl des Tochterkerns \(\rm{Y}\) ist um \(2\), die Massenzahl um \(4\) kleiner als die des Mutterkerns.
  • Die Reaktionsgleichung lautet \(_{Z}^{A}{\rm{X}}\to\;_{Z-2}^{A-4}{\rm{Y}} +\;_{2}^{4}{\rm{He }}\)
  • Der \(Q\)-Wert berechnet sich mit Atommassen durch \(Q = \left[ m_{\rm{A}}\left( \rm{X} \right)-m_{\rm{A}}\left( \rm{Y} \right)-m_{\rm{A}}\left(_{2}^{4}{\rm{He }} \right) \right] \cdot c^2\)

Zum Artikel Zu den Aufgaben

Energiebilanz beim EC-Prozess oder K-Einfang

Grundwissen

  • Beim EC-Prozess oder K-Einfang wandelt sich im Mutterkern \(\rm{X}\) ein Proton zusammen mit einem Elektron (meist aus der K-Schale) in ein Neutron um. Gleichzeitig wird ein Elektron-Neutrino \(\nu_{\rm{e}}\) emittiert. Die Ordnungszahl des Tochterkerns \(\rm{Y}\) ist um \(1\) kleiner als die des Mutterkerns, die Massenzahl bleibt gleich.
  • Die Reaktionsgleichung lautet \(_Z^A{\rm{X}} +\;_{-1}^0{\rm{e^-}} \to\;_{Z-1}^A{\rm{Y}} +\;_0^0{\nu_{\rm{e}}}\)
  • Der \(Q\)-Wert berechnet sich mit Atommassen durch \(Q=\left[ m_{\rm{A}}\left( \rm{X} \right)-m_{\rm{A}}\left( \rm{Y} \right)\right] \cdot c^2\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Beim EC-Prozess oder K-Einfang wandelt sich im Mutterkern \(\rm{X}\) ein Proton zusammen mit einem Elektron (meist aus der K-Schale) in ein Neutron um. Gleichzeitig wird ein Elektron-Neutrino \(\nu_{\rm{e}}\) emittiert. Die Ordnungszahl des Tochterkerns \(\rm{Y}\) ist um \(1\) kleiner als die des Mutterkerns, die Massenzahl bleibt gleich.
  • Die Reaktionsgleichung lautet \(_Z^A{\rm{X}} +\;_{-1}^0{\rm{e^-}} \to\;_{Z-1}^A{\rm{Y}} +\;_0^0{\nu_{\rm{e}}}\)
  • Der \(Q\)-Wert berechnet sich mit Atommassen durch \(Q=\left[ m_{\rm{A}}\left( \rm{X} \right)-m_{\rm{A}}\left( \rm{Y} \right)\right] \cdot c^2\)

Zum Artikel Zu den Aufgaben

Fadenstrahlrohr

Grundwissen

  • Im Fadenstrahlrohr werden Elektronen in einer Elektronenkanone beschleunigt und treten senkrecht zu den Feldlinien in das homogene B-Feld eines Helmholtzspulenpaares.
  • Die Elektronen bewegen sich im homogenen B-Feld auf einer Kreisbahn mit \(r = \frac{{m_e \cdot v_0}}{{e \cdot B}}\)
  • Mit dem Fadenstrahlrohr kann die spezifische Elektronenladung \(\frac{e}{m_e}\) bestimmt werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Im Fadenstrahlrohr werden Elektronen in einer Elektronenkanone beschleunigt und treten senkrecht zu den Feldlinien in das homogene B-Feld eines Helmholtzspulenpaares.
  • Die Elektronen bewegen sich im homogenen B-Feld auf einer Kreisbahn mit \(r = \frac{{m_e \cdot v_0}}{{e \cdot B}}\)
  • Mit dem Fadenstrahlrohr kann die spezifische Elektronenladung \(\frac{e}{m_e}\) bestimmt werden.

Zum Artikel Zu den Aufgaben

Energiebilanz bei Kernreaktionen

Grundwissen

  • Der Q-Wert einer Kernreaktion ist die Summe der nach der Kernreaktion vorliegenden kinetischen Energien und der Anregungsenergie \({E^*}\left({\rm{Y}}\right)\) von \(\rm{Y}\) vermindert um die vor der Reaktion vorliegenden kinetischen Energien.
  • Ist der Q-Wert positiv, so ist die Kernreaktion exotherm, ist der Q-Wert negativ, so ist die Kernreaktion endotherm.
  • Der Q-Wert lässt sich berechnen als die Differenz der Ruheenergien vor der Reaktion und der Ruheenergien nach der Reaktion: \(Q = \left( {{m_0}\left( {\rm{x}} \right) \cdot {c^2} + {m_0}\left( {\rm{X}} \right) \cdot {c^2}} \right) - \left( {{m_0}\left( {\rm{y}} \right) \cdot {c^2} + {m_0}\left( {\rm{Y}} \right) \cdot {c^2}} \right)\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Der Q-Wert einer Kernreaktion ist die Summe der nach der Kernreaktion vorliegenden kinetischen Energien und der Anregungsenergie \({E^*}\left({\rm{Y}}\right)\) von \(\rm{Y}\) vermindert um die vor der Reaktion vorliegenden kinetischen Energien.
  • Ist der Q-Wert positiv, so ist die Kernreaktion exotherm, ist der Q-Wert negativ, so ist die Kernreaktion endotherm.
  • Der Q-Wert lässt sich berechnen als die Differenz der Ruheenergien vor der Reaktion und der Ruheenergien nach der Reaktion: \(Q = \left( {{m_0}\left( {\rm{x}} \right) \cdot {c^2} + {m_0}\left( {\rm{X}} \right) \cdot {c^2}} \right) - \left( {{m_0}\left( {\rm{y}} \right) \cdot {c^2} + {m_0}\left( {\rm{Y}} \right) \cdot {c^2}} \right)\)

Zum Artikel Zu den Aufgaben

Kernkraft

Grundwissen

  • Die Kernkraft basiert auf der starken Wechselwirkung
  • Die Kernkraft sorgt bei kleinen Nukleonenabständen von etwa \(0{,}5\,\rm{fm}\) bis  \(2{,}5\,\rm{fm}\) für eine Anziehung der Nukleonen und hält somit den Atomkern zusammen.
  • Die Kernkraft ist wesentlich stärker als die Gravitationswechselwirkung oder die elektromagnetische Wechselwirkung.
  • Für den Radius eines Atomkerns gilt näherungsweise \({{r_k} = 1{,}4 \cdot {10^{ - 15}}\,\rm{m} \cdot \sqrt[3]{A}}\), wo \(A\) die Nukleonenanzahl ist.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Kernkraft basiert auf der starken Wechselwirkung
  • Die Kernkraft sorgt bei kleinen Nukleonenabständen von etwa \(0{,}5\,\rm{fm}\) bis  \(2{,}5\,\rm{fm}\) für eine Anziehung der Nukleonen und hält somit den Atomkern zusammen.
  • Die Kernkraft ist wesentlich stärker als die Gravitationswechselwirkung oder die elektromagnetische Wechselwirkung.
  • Für den Radius eines Atomkerns gilt näherungsweise \({{r_k} = 1{,}4 \cdot {10^{ - 15}}\,\rm{m} \cdot \sqrt[3]{A}}\), wo \(A\) die Nukleonenanzahl ist.

Zum Artikel Zu den Aufgaben

FEYNMAN-Diagramme

Grundwissen

  • FEYNMAN-Diagramme sind schematische Zeit-Ort-Diagramme von Teilchen (nicht die Bahnkurven) und bieten eine übersichtliche Darstellung von Wechselwirkungsprozessen.
  • Oft haben die Diagramme äußere Linien, welche Materieteilchen darstellen und innere Linien, die Botenteilchen darstellen.
  • Wechselwirkungspunkte, an denen Linien zusammentreffen nennt man Vertices (Singular: Vertex).

Zum Artikel Zu den Aufgaben
Grundwissen

  • FEYNMAN-Diagramme sind schematische Zeit-Ort-Diagramme von Teilchen (nicht die Bahnkurven) und bieten eine übersichtliche Darstellung von Wechselwirkungsprozessen.
  • Oft haben die Diagramme äußere Linien, welche Materieteilchen darstellen und innere Linien, die Botenteilchen darstellen.
  • Wechselwirkungspunkte, an denen Linien zusammentreffen nennt man Vertices (Singular: Vertex).

Zum Artikel Zu den Aufgaben