Direkt zum Inhalt
Suchergebnisse 31 - 60 von 412

Grundbegriffe der Energietechnik

Grundwissen
Grundwissen

Reversible und Irreversible Vorgänge

Grundwissen
Grundwissen

Einheiten der Energietechnik

Grundwissen
Grundwissen

Optische Geräte

Grundwissen

  • Wichtige optische Geräte sind Lupe, Fernrohr, Mikroskop und Fotoapparat.
  • Beim Fernrohr wird zwischen Kepler- und Galilei-Fernrohr unterschieden.
  • Häufig ist die Vergrößerung \(V\) eines optischen Gerätes von besonderem Interesse.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Wichtige optische Geräte sind Lupe, Fernrohr, Mikroskop und Fotoapparat.
  • Beim Fernrohr wird zwischen Kepler- und Galilei-Fernrohr unterschieden.
  • Häufig ist die Vergrößerung \(V\) eines optischen Gerätes von besonderem Interesse.

Zum Artikel Zu den Aufgaben

Ultraviolett

Grundwissen

  • Größenordnung der Wellenlänge: zwischen \(380\,{\rm nm}\) und \(1\,{\rm nm}\)
  • Größenordnung der Frequenz: von \(789\,{\rm THz}\) bis \(300\,{\rm PHz}\)
  • Anwendungen: Schwarzlichtlampen, Geldscheinprüfung, Härtung von Klebstoffen

Zum Artikel
Grundwissen

  • Größenordnung der Wellenlänge: zwischen \(380\,{\rm nm}\) und \(1\,{\rm nm}\)
  • Größenordnung der Frequenz: von \(789\,{\rm THz}\) bis \(300\,{\rm PHz}\)
  • Anwendungen: Schwarzlichtlampen, Geldscheinprüfung, Härtung von Klebstoffen

Zum Artikel Zu den Aufgaben

Röntgenstrahlung

Grundwissen

  • Größenordnung der Wellenlänge: zwischen \(1\,{\rm nm}\) und \(10\,{\rm pm}\)
  • Größenordnung der Frequenz: von \(3\cdot 10^{17}\,{\rm Hz}\) bis \(3\cdot 10^{19}\,{\rm Hz}\)
  • Anwendungen: Röntgengeräte, Computertomographen

Zum Artikel
Grundwissen

  • Größenordnung der Wellenlänge: zwischen \(1\,{\rm nm}\) und \(10\,{\rm pm}\)
  • Größenordnung der Frequenz: von \(3\cdot 10^{17}\,{\rm Hz}\) bis \(3\cdot 10^{19}\,{\rm Hz}\)
  • Anwendungen: Röntgengeräte, Computertomographen

Zum Artikel Zu den Aufgaben

Gammastrahlung

Grundwissen

  • Größenordnung der Wellenlänge: kleiner als \(10\,{\rm pm}\)
  • Größenordnung der Frequenz: größer als \(3\cdot 10^{19}\,{\rm Hz}\)
  • Auftreten: radioaktiver Zerfall, Umwandlungsreaktionen von Elementarteilchen

Zum Artikel
Grundwissen

  • Größenordnung der Wellenlänge: kleiner als \(10\,{\rm pm}\)
  • Größenordnung der Frequenz: größer als \(3\cdot 10^{19}\,{\rm Hz}\)
  • Auftreten: radioaktiver Zerfall, Umwandlungsreaktionen von Elementarteilchen

Zum Artikel Zu den Aufgaben

Absolute Temperatur

Grundwissen

  • Der absolute Nullpunkt der Temperatur liegt bei \(\vartheta=-273{,}15\,^\circ{\rm C}\).
  • Die Kelvin-Skala hat ihren Nullpunkt am absoluten Nullpunkt. Eine Temperatur von \(\vartheta=-273,15\,^\circ{\rm C}\) entspricht \(0\,{\rm K}\).
  • Kelvin-Temperaturen werden mit \(T\) symbolisiert und die Einheit Kelvin wird mit \({\rm K}\) abgekürzt.
  • Temperaturdifferenzen \(\Delta T\) werden in der Regel ebenfalls in \(\rm {K}\) angegeben.

Zum Artikel
Grundwissen

  • Der absolute Nullpunkt der Temperatur liegt bei \(\vartheta=-273{,}15\,^\circ{\rm C}\).
  • Die Kelvin-Skala hat ihren Nullpunkt am absoluten Nullpunkt. Eine Temperatur von \(\vartheta=-273,15\,^\circ{\rm C}\) entspricht \(0\,{\rm K}\).
  • Kelvin-Temperaturen werden mit \(T\) symbolisiert und die Einheit Kelvin wird mit \({\rm K}\) abgekürzt.
  • Temperaturdifferenzen \(\Delta T\) werden in der Regel ebenfalls in \(\rm {K}\) angegeben.

Zum Artikel Zu den Aufgaben

Wärmestrahlung (Temperaturstrahlung)

Grundwissen

  • Wärmestrahlung geht in der Regel von jedem Körper aus.
  • Je wärmer ein Körper ist, desto intensiver ist die Wärmestrahlung, die von ihm ausgeht.
  • Wärmestrahlung benötigt kein Medium um sich auszubreiten.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Wärmestrahlung geht in der Regel von jedem Körper aus.
  • Je wärmer ein Körper ist, desto intensiver ist die Wärmestrahlung, die von ihm ausgeht.
  • Wärmestrahlung benötigt kein Medium um sich auszubreiten.

Zum Artikel Zu den Aufgaben

Elektromagnetisches Spektrum

Grundwissen

  • Das elektromagnetische Spektrum erstreckt sich über viele Größenordnungen hinweg.
  • Das sichtbare Licht ist nur ein kleiner Teil des elektromagnetischen Spektrums.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Das elektromagnetische Spektrum erstreckt sich über viele Größenordnungen hinweg.
  • Das sichtbare Licht ist nur ein kleiner Teil des elektromagnetischen Spektrums.

Zum Artikel Zu den Aufgaben

Sichtbares Licht

Grundwissen

  • Größenordnung der Wellenlänge: zwischen \(780\,{\rm nm}\) und \(380\,{\rm nm}\)
  • Größenordnung der Frequenz: von \(384\,{\rm THz}\) bis \(789\,{\rm THz}\)

Zum Artikel
Grundwissen

  • Größenordnung der Wellenlänge: zwischen \(780\,{\rm nm}\) und \(380\,{\rm nm}\)
  • Größenordnung der Frequenz: von \(384\,{\rm THz}\) bis \(789\,{\rm THz}\)

Zum Artikel Zu den Aufgaben

Infrarot

Grundwissen

  • Größenordnung der Wellenlänge: zwischen \(1\,{\rm mm}\) und \(780\,{\rm nm}\)
  • Größenordnung der Frequenz: von \(300\,{\rm GHz}\) bis \(385\,{\rm THz}\)
  • Anwendungen: Fernbedienungen, Temperaturmessung, Vegetationsbestimmung

Zum Artikel
Grundwissen

  • Größenordnung der Wellenlänge: zwischen \(1\,{\rm mm}\) und \(780\,{\rm nm}\)
  • Größenordnung der Frequenz: von \(300\,{\rm GHz}\) bis \(385\,{\rm THz}\)
  • Anwendungen: Fernbedienungen, Temperaturmessung, Vegetationsbestimmung

Zum Artikel Zu den Aufgaben

Mikrowellen

Grundwissen

  • Größenordnung der Wellenlänge: zwischen \(1\,{\rm m}\) und \(1\,{\rm mm}\)
  • Größenordnung der Frequenz: von \(300\,{\rm MHz}\) bis \(300\,{\rm GHz}\)
  • Anwendungen: Funk, Mikrowellenherd, Radar

Zum Artikel
Grundwissen

  • Größenordnung der Wellenlänge: zwischen \(1\,{\rm m}\) und \(1\,{\rm mm}\)
  • Größenordnung der Frequenz: von \(300\,{\rm MHz}\) bis \(300\,{\rm GHz}\)
  • Anwendungen: Funk, Mikrowellenherd, Radar

Zum Artikel Zu den Aufgaben

Osterexperiment

Grundwissen
Grundwissen

Atommodell von BOHR

Grundwissen

  • BOHR versucht die die zentralen Probleme des Rutherford-Modells (Stabilität und quantenhafte Emission und Absorption) mit drei Postulaten zu lösen.
  • Die mit den drei Postulaten verbundene Vorstellung um den Kern kreisender Elektronen ist jedoch nicht haltbar!

Zum Artikel Zu den Aufgaben
Grundwissen

  • BOHR versucht die die zentralen Probleme des Rutherford-Modells (Stabilität und quantenhafte Emission und Absorption) mit drei Postulaten zu lösen.
  • Die mit den drei Postulaten verbundene Vorstellung um den Kern kreisender Elektronen ist jedoch nicht haltbar!

Zum Artikel Zu den Aufgaben

Strahlensatz

Grundwissen

 

Joachim Herz Stiftung

Bei einem von einer Punktlichtquelle ausgehendem, divergenten Lichtbündel sind die Entfernung g von der Quelle und die Breite B des Lichtbündels direkt proportional zueinander.\[\frac{B_1}{g_1}=\frac{B_2}{g_2}\qquad \rm{bzw.} \qquad \frac{B}{g}=\rm{const.}\]

Zum Artikel Zu den Aufgaben
Grundwissen

 

Joachim Herz Stiftung

Bei einem von einer Punktlichtquelle ausgehendem, divergenten Lichtbündel sind die Entfernung g von der Quelle und die Breite B des Lichtbündels direkt proportional zueinander.\[\frac{B_1}{g_1}=\frac{B_2}{g_2}\qquad \rm{bzw.} \qquad \frac{B}{g}=\rm{const.}\]

Zum Artikel Zu den Aufgaben

Gangunterschied bei zwei Quellen

Grundwissen

  • Zur Berechnung des Gangunterschiedes muss unterschieden werden, ob Sender und Empfänger nahe oder weit entfernt voneinander sind im Vergleich zu ihrem Abstand.
  • Bei Reflexion am optisch dichteren Medium muss zusätzlich der Phasensprung berücksichtigt werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Zur Berechnung des Gangunterschiedes muss unterschieden werden, ob Sender und Empfänger nahe oder weit entfernt voneinander sind im Vergleich zu ihrem Abstand.
  • Bei Reflexion am optisch dichteren Medium muss zusätzlich der Phasensprung berücksichtigt werden.

Zum Artikel Zu den Aufgaben

Potential und elektrische Spannung

Grundwissen

  • Die Potentialdifferenz \(\Delta {\varphi _{\rm{AB}}}\) ist der Quotient aus der Änderung der potentiellen Energie \(\Delta {E_{{\rm{pot}}{\rm{,AB}}}}\) und der Probeladung \(q\).
  • Die Potentialdifferenz zwischen zwei Punkten A und B ist die Spannung \(U_{\rm{AB}}\).
  • Alle Punkte mit gleichem Potential befinden sich auf einer Äquipotentiallinie.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Potentialdifferenz \(\Delta {\varphi _{\rm{AB}}}\) ist der Quotient aus der Änderung der potentiellen Energie \(\Delta {E_{{\rm{pot}}{\rm{,AB}}}}\) und der Probeladung \(q\).
  • Die Potentialdifferenz zwischen zwei Punkten A und B ist die Spannung \(U_{\rm{AB}}\).
  • Alle Punkte mit gleichem Potential befinden sich auf einer Äquipotentiallinie.

Zum Artikel Zu den Aufgaben

Gesetz von MOSELEY

Grundwissen

  • Das Gesetz von MOSELEY beschreibt einen Zusammenhang zwischen der Wellenlänge der \(K_{\alpha}\)-Strahlung und der Ordnungszahl \(Z\) des Anodenmaterials.
  • Das Gesetz von MOSELEY lautet \(\frac{1}{{{\lambda _{{K_{\alpha}}}}}} = {\left( {Z - 1} \right)^2} \cdot {R_\infty } \cdot \frac{3}{4}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Das Gesetz von MOSELEY beschreibt einen Zusammenhang zwischen der Wellenlänge der \(K_{\alpha}\)-Strahlung und der Ordnungszahl \(Z\) des Anodenmaterials.
  • Das Gesetz von MOSELEY lautet \(\frac{1}{{{\lambda _{{K_{\alpha}}}}}} = {\left( {Z - 1} \right)^2} \cdot {R_\infty } \cdot \frac{3}{4}\)

Zum Artikel Zu den Aufgaben

HERTZsche Versuche

Grundwissen

  • Hertz erzeugte nicht-sichtbare elektromagnetische Wellen mithilfe eines Sendedipols.
  • Die so erzeugten elektromagnetischen Wellen verhalten sich in Bezug auf Reflexion, Brechung und Bündelung ähnlich wie Licht.
  • Bei Licht handelt es sich um eine elektromagnetische Welle.

Zum Artikel
Grundwissen

  • Hertz erzeugte nicht-sichtbare elektromagnetische Wellen mithilfe eines Sendedipols.
  • Die so erzeugten elektromagnetischen Wellen verhalten sich in Bezug auf Reflexion, Brechung und Bündelung ähnlich wie Licht.
  • Bei Licht handelt es sich um eine elektromagnetische Welle.

Zum Artikel Zu den Aufgaben

Bestimmung der AVOGADRO-Konstante durch RÖNTGEN-Spektroskopie

Grundwissen

  • Kennst du die Dichte, die Struktur und den Aufbau (Netzebenenabstand) eines Kristalls, so kannst du die AVOGADRO-Konstante bestimmen
  • Den Netzebenenabstand eines Einkristalls bestimmt man mittels RÖNTGEN-Spektroskopie
  • Die Elementarzelle eines einfachen kubischen Einkristalls ist ein Würfel. Jeder Elementarzelle wird hier genau ein Teilchen zugeordnet.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Kennst du die Dichte, die Struktur und den Aufbau (Netzebenenabstand) eines Kristalls, so kannst du die AVOGADRO-Konstante bestimmen
  • Den Netzebenenabstand eines Einkristalls bestimmt man mittels RÖNTGEN-Spektroskopie
  • Die Elementarzelle eines einfachen kubischen Einkristalls ist ein Würfel. Jeder Elementarzelle wird hier genau ein Teilchen zugeordnet.

Zum Artikel Zu den Aufgaben

Magnetische Wirkung des elektrischen Stroms

Grundwissen

  • Elektrischer Strom besitzt eine magnetische Wirkung, die bei einem einfachen geraden Leiter jedoch sehr schwach ist.
  • Wird in eine Spule ein ferromagnetischer Stoff wie Eisen eingebracht, verstärkt sich die magnetische Wirkung sehr deutlich.
  • Ein großer Vorteil von Elektromagneten ist, dass ihre magnetische Wirkung beim Abschalten des Stroms nahezu verschwindet.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Elektrischer Strom besitzt eine magnetische Wirkung, die bei einem einfachen geraden Leiter jedoch sehr schwach ist.
  • Wird in eine Spule ein ferromagnetischer Stoff wie Eisen eingebracht, verstärkt sich die magnetische Wirkung sehr deutlich.
  • Ein großer Vorteil von Elektromagneten ist, dass ihre magnetische Wirkung beim Abschalten des Stroms nahezu verschwindet.

Zum Artikel Zu den Aufgaben

Atomare Vorstellungen der Elektrizität

Grundwissen

  • In der Modellvorstellung des Kern-Hülle-Modells besteht ein Atom aus einem positiv geladenen Atomkern und negativ geladenen Elektronen in der Atomhülle.
  • Positive Ladung wird oft rot, negative Ladung blau dargestellt.
  • Bei vielen Phänomenen bewegen sich nur die Elektronen, während die Atomkerne an ihrem Platz bleiben.

Zum Artikel Zu den Aufgaben
Grundwissen

  • In der Modellvorstellung des Kern-Hülle-Modells besteht ein Atom aus einem positiv geladenen Atomkern und negativ geladenen Elektronen in der Atomhülle.
  • Positive Ladung wird oft rot, negative Ladung blau dargestellt.
  • Bei vielen Phänomenen bewegen sich nur die Elektronen, während die Atomkerne an ihrem Platz bleiben.

Zum Artikel Zu den Aufgaben

Wechselwirkung ungleich Gleichgewicht

Grundwissen

  • Wechselwirkungskräfte und Kräftegleichgewicht dürfen nicht verwechselt werden.
  • Wechselwirkungskräfte greifen immer an zwei unterschiedlichen Körpern an, Kräfte im Gleichgewicht an einem einzigen Körper.
  • Wechselwirkungskräfte treten immer auf, ein Kräftegleichgewicht kann nur vorliegen, muss aber nicht.

Zum Artikel
Grundwissen

  • Wechselwirkungskräfte und Kräftegleichgewicht dürfen nicht verwechselt werden.
  • Wechselwirkungskräfte greifen immer an zwei unterschiedlichen Körpern an, Kräfte im Gleichgewicht an einem einzigen Körper.
  • Wechselwirkungskräfte treten immer auf, ein Kräftegleichgewicht kann nur vorliegen, muss aber nicht.

Zum Artikel Zu den Aufgaben

LENZsche Regel

Grundwissen

  • Der Induktionsstrom ist stets so gerichtet, dass der Induktionsstrom der Ursache seiner Entstehung entgegenwirkt.
  • Die LENZsche Regel ermöglicht einfache Vorhersagen zur Richtung auftretender Induktionsströme.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Der Induktionsstrom ist stets so gerichtet, dass der Induktionsstrom der Ursache seiner Entstehung entgegenwirkt.
  • Die LENZsche Regel ermöglicht einfache Vorhersagen zur Richtung auftretender Induktionsströme.

Zum Artikel Zu den Aufgaben