Direkt zum Inhalt
Suchergebnisse 151 - 180 von 186

Energiezustände im BOHRschen Atommodell

Grundwissen

  • Durch die Quantenbedingung von BOHR kann die Energie eines Atoms nur bestimmte Werte annehmen.
  • Die Energie, um Wasserstoff aus dem Grundzustand heraus zu ionisieren beträgt \(13{,}6\,\rm{eV}\) (Ionisierungsenergie).
  • Die Gesamtenergie eines Elektrons im Wasserstoffatom gilt \({E_{{\rm{ges}}{\rm{,n}}}} = - R_{\infty} \cdot h \cdot c \cdot \frac{1}{{{n^2}}}\), wobei \(R_{\infty}\) die Rydberg-Konstante ist.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Durch die Quantenbedingung von BOHR kann die Energie eines Atoms nur bestimmte Werte annehmen.
  • Die Energie, um Wasserstoff aus dem Grundzustand heraus zu ionisieren beträgt \(13{,}6\,\rm{eV}\) (Ionisierungsenergie).
  • Die Gesamtenergie eines Elektrons im Wasserstoffatom gilt \({E_{{\rm{ges}}{\rm{,n}}}} = - R_{\infty} \cdot h \cdot c \cdot \frac{1}{{{n^2}}}\), wobei \(R_{\infty}\) die Rydberg-Konstante ist.

Zum Artikel Zu den Aufgaben

FEYNMAN-Diagramme

Grundwissen

  • FEYNMAN-Diagramme sind schematische Zeit-Ort-Diagramme von Teilchen (nicht die Bahnkurven) und bieten eine übersichtliche Darstellung von Wechselwirkungsprozessen.
  • Oft haben die Diagramme äußere Linien, welche Materieteilchen darstellen und innere Linien, die Botenteilchen darstellen.
  • Wechselwirkungspunkte, an denen Linien zusammentreffen nennt man Vertices (Singular: Vertex).

Zum Artikel Zu den Aufgaben
Grundwissen

  • FEYNMAN-Diagramme sind schematische Zeit-Ort-Diagramme von Teilchen (nicht die Bahnkurven) und bieten eine übersichtliche Darstellung von Wechselwirkungsprozessen.
  • Oft haben die Diagramme äußere Linien, welche Materieteilchen darstellen und innere Linien, die Botenteilchen darstellen.
  • Wechselwirkungspunkte, an denen Linien zusammentreffen nennt man Vertices (Singular: Vertex).

Zum Artikel Zu den Aufgaben

Kosmologische Rotverschiebung

Grundwissen

  • In den Spektren weit entfernter Galaxien finden sich, wie beim Sonnenspektrum, verschiedene Absorptionslinien.
  • Die Absorptionslinien weit entfernter Galaxien sind deutlich stärker ins Rote verschoben.
  • Ursache für die kosmologische Rotverschiebung ist die Ausdehnung des Raumes selbst, nicht eine Relativbewegung der Galaxie im Vergleich zum Beobachter.
  • In der Astronomie wird die Rotverschiebung häufig durch die dimensionslose Größe \(z=\frac{\lambda_{\rm{beobachtet}}}{\lambda_0}-1\) angegeben.

Zum Artikel
Grundwissen

  • In den Spektren weit entfernter Galaxien finden sich, wie beim Sonnenspektrum, verschiedene Absorptionslinien.
  • Die Absorptionslinien weit entfernter Galaxien sind deutlich stärker ins Rote verschoben.
  • Ursache für die kosmologische Rotverschiebung ist die Ausdehnung des Raumes selbst, nicht eine Relativbewegung der Galaxie im Vergleich zum Beobachter.
  • In der Astronomie wird die Rotverschiebung häufig durch die dimensionslose Größe \(z=\frac{\lambda_{\rm{beobachtet}}}{\lambda_0}-1\) angegeben.

Zum Artikel Zu den Aufgaben

Quantenmechanische Systematisierung des Periodensystems

Grundwissen

  • Die Zustände der gebundenen Elektronen eines Atoms werden mit den Quantenzahlen beschrieben.
  • Es gibt vier unterschiedliche Quantenzahlen: Hauptquantenzahl \(n\), Nebenquantenzahl \(l\), magnetische Quantenzahl \(m\) und Spin-Quantenzahl \(s\).
  • Das PAULI-Prinzip besagt, dass in einem Atom niemals zwei Elektronen in allen vier Quantenzahlen übereinstimmen können.

Zum Artikel
Grundwissen

  • Die Zustände der gebundenen Elektronen eines Atoms werden mit den Quantenzahlen beschrieben.
  • Es gibt vier unterschiedliche Quantenzahlen: Hauptquantenzahl \(n\), Nebenquantenzahl \(l\), magnetische Quantenzahl \(m\) und Spin-Quantenzahl \(s\).
  • Das PAULI-Prinzip besagt, dass in einem Atom niemals zwei Elektronen in allen vier Quantenzahlen übereinstimmen können.

Zum Artikel Zu den Aufgaben

Atomdurchmesser aus dem Ölfleckversuch

Grundwissen

  • Beim Ölfleckversuch wird aus einer makroskopischen Beobachtung auf eine mikroskopische Eigenschaft geschlossen.
  • Der Durchmesser eines Atoms liegt in der Größenordnung von \(10^{-10}\,\rm{m}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Beim Ölfleckversuch wird aus einer makroskopischen Beobachtung auf eine mikroskopische Eigenschaft geschlossen.
  • Der Durchmesser eines Atoms liegt in der Größenordnung von \(10^{-10}\,\rm{m}\).

Zum Artikel Zu den Aufgaben

Aufbau von Atomkernen

Grundwissen

  • Atomkerne bestehen aus Nukleonen. Dies sind entweder die elektrisch positiven Protonen und elektrische neutralen Neutronen.
  • Die Kernladungs- oder Ordnungszahl \(Z\) gibt die Zahl der Protonen in einem Atomkern an und bestimmt, um welches Element es sich handelt.
  • Jedes Element hat seine feste Kernladungszahl \(Z\), kann aber mehrere Isotope mit unterschiedlicher Neutronenzahlen \(N\) besitzen.
  • Die Nukleonen- oder Massenzahl \(A=Z+N\) gibt die (ungefähre) Masse eines Atomkerns bzw. des ganzen Atoms in der Maßeinheit \(\rm{u}\) an.
  • Zur eindeutigen Identifikation von Atomkernen nutzt man die Schreibweise\[_Z^A{\rm{X }} \buildrel \wedge \over = \;_{{\rm{Ordnungszahl}}}^{{\rm{Massenzahl}}}{\rm{Elementsymbol}},\;{\rm{alsoz}}.{\rm{B}}.\;_{\rm{6}}^{{\rm{14}}}{\rm{C}}\]

Zum Artikel Zu den Aufgaben
Grundwissen

  • Atomkerne bestehen aus Nukleonen. Dies sind entweder die elektrisch positiven Protonen und elektrische neutralen Neutronen.
  • Die Kernladungs- oder Ordnungszahl \(Z\) gibt die Zahl der Protonen in einem Atomkern an und bestimmt, um welches Element es sich handelt.
  • Jedes Element hat seine feste Kernladungszahl \(Z\), kann aber mehrere Isotope mit unterschiedlicher Neutronenzahlen \(N\) besitzen.
  • Die Nukleonen- oder Massenzahl \(A=Z+N\) gibt die (ungefähre) Masse eines Atomkerns bzw. des ganzen Atoms in der Maßeinheit \(\rm{u}\) an.
  • Zur eindeutigen Identifikation von Atomkernen nutzt man die Schreibweise\[_Z^A{\rm{X }} \buildrel \wedge \over = \;_{{\rm{Ordnungszahl}}}^{{\rm{Massenzahl}}}{\rm{Elementsymbol}},\;{\rm{alsoz}}.{\rm{B}}.\;_{\rm{6}}^{{\rm{14}}}{\rm{C}}\]

Zum Artikel Zu den Aufgaben

Nuklidkarte stabiler Kerne

Grundwissen

  • Verschiedene Atomkerne werden häufig in einer \(N\)-\(Z\)-Nuklidkarte dargestellt.
  • Unterschiedliche Elemente stehen jeweils in verschiedenen Zeilen, Isotope des gleichen Elementes jeweils in der gleichen Zeile.
  • Kleine, leichte Kerne besitzen ungefähr genau so viele Protonen wie Neutronen, bei großen, schweren Kernen ist die Zahl der Neutronen deutlich größer als die der Protonen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Verschiedene Atomkerne werden häufig in einer \(N\)-\(Z\)-Nuklidkarte dargestellt.
  • Unterschiedliche Elemente stehen jeweils in verschiedenen Zeilen, Isotope des gleichen Elementes jeweils in der gleichen Zeile.
  • Kleine, leichte Kerne besitzen ungefähr genau so viele Protonen wie Neutronen, bei großen, schweren Kernen ist die Zahl der Neutronen deutlich größer als die der Protonen.

Zum Artikel Zu den Aufgaben

Astronomie

Astronomie Einführung

  • Warum dauert ein Jahr 365 Tage?
  • Woher kommen eigentlich die verschiedenen Jahreszeiten?
  • Warum gibt es die Mondphasen?
  • Wie entstehen Sonnen- und Mondfinsternisse?

Zum Themenbereich
Themenbereich

Astronomie

Fixsterne

  • Wie wird ein Stern geboren?
  • Was ist ein Roter Riese …
  • … und was ein Weißer Zwerg?
  • Wie entstehen eigentlich Schwarze Löcher?

Zum Themenbereich
Themenbereich

Astronomie

Sonne

  • Ist unsere Sonne eigentlich auch ein Stern?
  • Wie ist unsere Sonne in ihrem Innern aufgebaut?
  • Woher erhält die Sonne eigentlich ihre Energie?
  • Wie sieht die Zukunft unserer Sonne aus?

Zum Themenbereich
Themenbereich

Astronomie

Sternbeobachtung

  • Wie orientiert man man sich auf der Himmelskugel
  • Wie bestimmt man eigentlich Entfernungen im Sonnensystem?
  • Wie bestimmt man Positionen am Himmel?

Zum Themenbereich
Themenbereich

Astronomie

Planetensystem

  • Nach welchen Gesetzen bewegen sich die Planeten?
  • Warum kreisen die Planeten eigentlich um die Sonne?
  • Welche Energie benötigt eine Mondrakete?
  • Kommen wir jemals aus unserem Sonnensystem heraus?

Zum Themenbereich
Themenbereich

Wärmelehre

Allgemeines Gasgesetz

  • Warum transportieren Taucher Sauerstoff in Metallflaschen?
  • Was geschieht, wenn man Luft immer weiter abkühlt?
  • Warum benutzt man im Weltall Gasthermometer?

Zum Themenbereich
Themenbereich

Wärmelehre

Ausdehnung bei Erwärmung

  • Wie funktioniert ein Heißluftballon?
  • Wofür sind die Dehnungsfugen in Mauern?
  • Warum darf man keine Wasserflaschen ins Eisfach legen?
  • Wie überleben Fische eigentlich im Winter?

Zum Themenbereich
Themenbereich

Wärmelehre

Innere Energie - Wärmekapazität

  • Was lässt sich leichter erwärmen, Wasser oder Blei?
  • Warum ist es am Meer oft wärmer als im Landesinneren?
  • Kann man Eisen mit einem Hammer zum Glühen bringen?
  • Warum schwitzen wir eigentlich im Sommer?

Zum Themenbereich
Themenbereich

Wärmelehre

Kinetische Gastheorie

  • Was geschieht eigentlich in einem Gas, das man erwärmt?
  • Wie schnell bewegen sich die Teilchen in einem Gas?
  • Wie funktioniert eine Lichtmühle?

Zum Themenbereich
Themenbereich

Wärmelehre

Temperatur und Teilchenmodell

  • Wie entstand eigentlich die CELSIUS-Skala?
  • Woher kennt man den absoluten Nullpunkt?
  • Was geschieht in Körpern, wenn man sie erwärmt?
  • Wie wird Wärme zwischen Körper übertragen?

Zum Themenbereich
Themenbereich

Wärmelehre

Wärmekraftmaschinen

  • Wie funktioniert eigentlich eine Dampfmaschine?
  • Was ist so besonders an einem WANKEL-Motor?
  • OTTO- oder DIESEL-Motor?
  • Was versteht man unter einem Wirkungsgrad?

Zum Themenbereich
Themenbereich

Wärmelehre

Wärmetransport

  • Warum werden Häuser mit Schaumstoffen gedämmt?
  • Wie bleiben Tiere im Winter warm?
  • Wie kommt eigentlich die Wärme der Sonne zur Erde?

Zum Themenbereich
Themenbereich

Wärmelehre

Wetter und Klima

  • Wie entstehen eigentlich Wolken?
  • Was sind Hoch- und Tiefdruckgebiete?
  • Wie kommt es zu einem Gewitter?
  • Was ist der Treibhauseffekt?

Zum Themenbereich
Themenbereich

Astronomie

Kosmologie

  • Woher kommt die Hintergrundstrahlung?
  • Was ist die kosmische Rotverschiebung?
  • Was ist Dunkle Materie …
  • … und was Dunkle Energie?
  • Was versteht man unter dem Standardmodell?

Zum Themenbereich
Themenbereich

Kern-/Teilchenphysik

Anwendungen der Kernphysik

  • Wie funktioniert die Altersbestimmung von fossilen Funden?
  • Warum bestrahlt man Lebensmittel?
  • Was versteht man unter Szintigraphie?
  • Was ist die Tracermethode?

Zum Themenbereich
Themenbereich

Kern-/Teilchenphysik

Kernphysik - Grundlagen

  • Wie sind Atomkerne aufgebaut?
  • Welche Kraft hält Atomkerne zusammen?
  • Warum können Atomkerne zerfallen?
  • Was sind Isotope?

Zum Themenbereich
Themenbereich

Kern-/Teilchenphysik

Kernreaktionen

  • Wie groß sind die Bindungsenergien?
  • Was ist der Massendefekt?
  • Wie berechnet man die Energiebilanz bei Kernreaktionen?

Zum Themenbereich
Themenbereich

Kern-/Teilchenphysik

Kernspaltung und Kernfusion

  • Welche Bedeutung hat die EINSTEIN-Formel in der Kernphysik?
  • Wie viel Energie kann man bei der Kernspaltung …
  • … und wie viel bei der Kernfusion gewinnen?
  • Warum gibt es noch keine Fusionsreaktoren?

Zum Themenbereich
Themenbereich

Kern-/Teilchenphysik

Radioaktivität - Einführung

  • Gibt es verschiedene Arten ionisierender Strahlung?
  • Welche Eigenschaften hat ionisierende Strahlung?
  • Warum ist ionisierende Strahlung so gefährlich?
  • Kann man sich gegen ionisierende Strahlung schützen?

Zum Themenbereich
Themenbereich

Kern-/Teilchenphysik

Radioaktivität - Fortführung

  • Wie viel Energie wird bei einem Alpha-Zerfall …
  • … und wie viel bei einem Beta-Zerfall frei?
  • Was versteht man unter dem MÖSSBAUER-Effekt?

Zum Themenbereich
Themenbereich

Kern-/Teilchenphysik

Teilchenphysik

  • Was ist der Unterschied zwischen Teilchen …
  • … und ihren Antiteilchen?
  • Welche fundamentalen Wechselwirkungen kennen wir?
  • Wie sieht das Standardmodell der Elementarteilchen aus?

Zum Themenbereich
Themenbereich

Wärmelehre

Deterministisches Chaos

  • Was versteht man unter dem Kausalprinzip?
  • Kann ein Schmetterling einen Wirbelsturm verursachen?
  • Deterministisches Chaos – ist das nicht ein Widerspruch?

Zum Themenbereich
Themenbereich

Atomphysik

RÖNTGEN-Strahlung

  • Wie werden Giftstoffe in Lebensmitteln gefunden?
  • Wie untersucht man Werkstoffe, ohne sie zu zerstören?
  • Welche Gefahren bestehen bei einer CT-Untersuchung?

Zum Themenbereich
Themenbereich