Direkt zum Inhalt
Suchergebnisse 31 - 60 von 231

HERTZsche Versuche

Grundwissen

  • Hertz erzeugte nicht-sichtbare elektromagnetische Wellen mithilfe eines Sendedipols.
  • Die so erzeugten elektromagnetischen Wellen verhalten sich in Bezug auf Reflexion, Brechung und Bündelung ähnlich wie Licht.
  • Bei Licht handelt es sich um eine elektromagnetische Welle.

Zum Artikel
Grundwissen

  • Hertz erzeugte nicht-sichtbare elektromagnetische Wellen mithilfe eines Sendedipols.
  • Die so erzeugten elektromagnetischen Wellen verhalten sich in Bezug auf Reflexion, Brechung und Bündelung ähnlich wie Licht.
  • Bei Licht handelt es sich um eine elektromagnetische Welle.

Zum Artikel Zu den Aufgaben

Licht als Teilchen - Vorstellungen von Newton

Grundwissen

  • In Teilchenvorstellung von Licht besteht das Licht aus winzigen Teilchen (Korpuskeln).
  • Geradlinige Lichtausbreitung und Reflexion können mit dem Modell erklärt werden.
  • Beugung und Interferenz können nicht mithilfe des Modell erklärt werden.

Zum Artikel
Grundwissen

  • In Teilchenvorstellung von Licht besteht das Licht aus winzigen Teilchen (Korpuskeln).
  • Geradlinige Lichtausbreitung und Reflexion können mit dem Modell erklärt werden.
  • Beugung und Interferenz können nicht mithilfe des Modell erklärt werden.

Zum Artikel Zu den Aufgaben

Überblick über Wärmekraftmaschinen

Grundwissen

  • Wärmekraftmaschinen erleichtern uns an vielen Stellen im Alltag das Leben.
  • Die Dampfmaschine war die erste wichtige Wärmekraftmaschine.
  • Der Wirkungsgrad von Wärmekraftmaschinen ist begrenzt.

Zum Artikel
Grundwissen

  • Wärmekraftmaschinen erleichtern uns an vielen Stellen im Alltag das Leben.
  • Die Dampfmaschine war die erste wichtige Wärmekraftmaschine.
  • Der Wirkungsgrad von Wärmekraftmaschinen ist begrenzt.

Zum Artikel Zu den Aufgaben

Gas- und Dampfkraftwerk (GuD-Kraftwerk)

Grundwissen
Grundwissen

Optischer DOPPLER-Effekt

Grundwissen

  • Bewegt sich der Sender auf den Empfänger zu, so ist die vom Empfänger wahrgenommene Wellenlänge \(\lambda'\) kürzer.
  • Bewegt sich der Sender vom Empfänger weg, so ist die vom Empfänger wahrgenommene Wellenlänge \(\lambda'\) länger.
  • Der Effekt führt zur Rot- bzw. Blauverschiebung von Spektren, was genutzt wird, um Planetenbewegungen zu untersuchen.

Zum Artikel
Grundwissen

  • Bewegt sich der Sender auf den Empfänger zu, so ist die vom Empfänger wahrgenommene Wellenlänge \(\lambda'\) kürzer.
  • Bewegt sich der Sender vom Empfänger weg, so ist die vom Empfänger wahrgenommene Wellenlänge \(\lambda'\) länger.
  • Der Effekt führt zur Rot- bzw. Blauverschiebung von Spektren, was genutzt wird, um Planetenbewegungen zu untersuchen.

Zum Artikel Zu den Aufgaben

Lichtbrechung - Fortführung

Grundwissen

  • Der Zusammenhang zwischen Einfallswinkel und Brechungswinkel kann gut grafisch dargestellt werden.
  • Entsprechende Diagramme können in beide Richtungen gelesen werden. Sowohl Übergänge von dicht zu dünn als auch von dünn zu dicht zu dünn können abgelesen werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Der Zusammenhang zwischen Einfallswinkel und Brechungswinkel kann gut grafisch dargestellt werden.
  • Entsprechende Diagramme können in beide Richtungen gelesen werden. Sowohl Übergänge von dicht zu dünn als auch von dünn zu dicht zu dünn können abgelesen werden.

Zum Artikel Zu den Aufgaben

Allgemeines Gasgesetz

Grundwissen

  • Das Gesetz von BOYLE-MARIOTTE und das Gesetz von GAY-LUSSAC können zur allgemeinen Gasgleichung zusammengefasst werden.
  • Die allgemeine Gasgleichung besagt: \(\frac{{p \cdot V}}{T}\;{\rm{ist}}\;{\rm{konstant}}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Das Gesetz von BOYLE-MARIOTTE und das Gesetz von GAY-LUSSAC können zur allgemeinen Gasgleichung zusammengefasst werden.
  • Die allgemeine Gasgleichung besagt: \(\frac{{p \cdot V}}{T}\;{\rm{ist}}\;{\rm{konstant}}\)

Zum Artikel Zu den Aufgaben

Änderung der inneren Energie

Grundwissen

  • Eine Änderung der inneren Energie \(\Delta E_{\rm i}\) kann durch Verrichtung von Arbeit an einem Körper oder durch Übertragung von Wärme auf einen Körper erfolgen.
  • Die Änderung der innere Energie \(\Delta E_{\rm i}\) ist proportional zur Temperaturänderung \(\Delta \vartheta\) und zur Masse \(m\) .
  • Mathematisch wird der Zusammenhang beschrieben durch \(\Delta E_{\rm i}= c \cdot m\cdot \Delta \vartheta\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Eine Änderung der inneren Energie \(\Delta E_{\rm i}\) kann durch Verrichtung von Arbeit an einem Körper oder durch Übertragung von Wärme auf einen Körper erfolgen.
  • Die Änderung der innere Energie \(\Delta E_{\rm i}\) ist proportional zur Temperaturänderung \(\Delta \vartheta\) und zur Masse \(m\) .
  • Mathematisch wird der Zusammenhang beschrieben durch \(\Delta E_{\rm i}= c \cdot m\cdot \Delta \vartheta\).

Zum Artikel Zu den Aufgaben

Wärmetransport

Grundwissen

  • Wärmetransport kann auf drei unterschiedliche Arten stattfinden: durch Wärmeleitung, durch Wärmemitführung (Wärmeströmung oder Konvektion) oder durch Wärmestrahlung (Temperaturstrahlung)
  • Im Alltag treten oft mehrere Arten gemeinsam auf
  • Häufig leistet eine Transportart den mit Abstand größten Beitrag zum gesamten Wärmetransport

Zum Artikel Zu den Aufgaben
Grundwissen

  • Wärmetransport kann auf drei unterschiedliche Arten stattfinden: durch Wärmeleitung, durch Wärmemitführung (Wärmeströmung oder Konvektion) oder durch Wärmestrahlung (Temperaturstrahlung)
  • Im Alltag treten oft mehrere Arten gemeinsam auf
  • Häufig leistet eine Transportart den mit Abstand größten Beitrag zum gesamten Wärmetransport

Zum Artikel Zu den Aufgaben

Physik beim Fahrradfahren

Grundwissen
Grundwissen

Erstellen von Diagrammen

Grundwissen

  • Für ein Diagramm benötigst du zunächst zusammengehörige Messwerte zweier Größen (meist aus einem Experiment).
  • Die im Diagramm zuerst genannte Größe kommt auf die Rechtswertachse, die zweite Größe auf die Hochwertachse.
  • Durch die Messpunkte wird im Diagramm eine möglichst glatten Kurve ohne Ecken und Knicke gezeichnet, wobei nicht alle Punkte genau auf der Kurve liegen müssen (Messfehler).

Zum Artikel
Grundwissen

  • Für ein Diagramm benötigst du zunächst zusammengehörige Messwerte zweier Größen (meist aus einem Experiment).
  • Die im Diagramm zuerst genannte Größe kommt auf die Rechtswertachse, die zweite Größe auf die Hochwertachse.
  • Durch die Messpunkte wird im Diagramm eine möglichst glatten Kurve ohne Ecken und Knicke gezeichnet, wobei nicht alle Punkte genau auf der Kurve liegen müssen (Messfehler).

Zum Artikel Zu den Aufgaben

Auswerten von Diagrammen - Einführung

Grundwissen

  • Messwerte werden zur Auswertung oft in ein Diagramm eingetragen. Je nach Lage wird dann eine Ausgleichsgerade oder eine Kurve im Diagramm ergänzt.
  • Mit Hilfe der Ausgleichsgeraden oder Kurve können weitere Wertepaare im Bereich der Messwerte bestimmt (interpoliert) werden.
  • Eine Verlängerung der Ausgleichsgeraden oder Kurve deutlich über den Bereich der Messwerte hinaus ist meist nicht zulässig.

Zum Artikel
Grundwissen

  • Messwerte werden zur Auswertung oft in ein Diagramm eingetragen. Je nach Lage wird dann eine Ausgleichsgerade oder eine Kurve im Diagramm ergänzt.
  • Mit Hilfe der Ausgleichsgeraden oder Kurve können weitere Wertepaare im Bereich der Messwerte bestimmt (interpoliert) werden.
  • Eine Verlängerung der Ausgleichsgeraden oder Kurve deutlich über den Bereich der Messwerte hinaus ist meist nicht zulässig.

Zum Artikel Zu den Aufgaben

Teilchenmodell

Grundwissen

  • Alle Körper sind aus kleinen, sich ständig bewegenden Teilchen aufgebaut.
  • Ein Körper hat unterschiedliche Eigeschaften, je nachdem ob er fest, flüssig oder gasförmig ist.
  • Je mehr ein Stoff erwärmt wird, desto mehr bewegen sich die Teilchen des Stoffes.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Alle Körper sind aus kleinen, sich ständig bewegenden Teilchen aufgebaut.
  • Ein Körper hat unterschiedliche Eigeschaften, je nachdem ob er fest, flüssig oder gasförmig ist.
  • Je mehr ein Stoff erwärmt wird, desto mehr bewegen sich die Teilchen des Stoffes.

Zum Artikel Zu den Aufgaben

Universelle Gasgleichung

Grundwissen

Die universelle Gasgleichung lautet \[p \cdot V = k_{\rm B} \cdot N \cdot T\] mit dem Druck \(p\), dem Volumen \(V\), der Boltzmann-Konstanten \(k_{\rm B}\), der Teilchenzahl \(N\) und der Temperatur \(T\). 

Zum Artikel Zu den Aufgaben
Grundwissen

Die universelle Gasgleichung lautet \[p \cdot V = k_{\rm B} \cdot N \cdot T\] mit dem Druck \(p\), dem Volumen \(V\), der Boltzmann-Konstanten \(k_{\rm B}\), der Teilchenzahl \(N\) und der Temperatur \(T\). 

Zum Artikel Zu den Aufgaben

Starke und schwache Kausalität

Grundwissen

  • Schwacher Kausalität liegt vor, wenn exakt gleiche Ursachen die stets gleiche Wirkung zur Folge haben.
  •  Starker Kausalität liegt vor, wenn ähnliche Ursachen eine ähnliche Wirkung zur Folge haben. Kleine Änderungen im Ausgangszustand führen nur zu kleinen Änderungen im Ergebnis.
  • Viele Systeme in der Natur sind labile Gleichgewichtszustände. Hier liegt keine starke Kausalität vor.

Zum Artikel
Grundwissen

  • Schwacher Kausalität liegt vor, wenn exakt gleiche Ursachen die stets gleiche Wirkung zur Folge haben.
  •  Starker Kausalität liegt vor, wenn ähnliche Ursachen eine ähnliche Wirkung zur Folge haben. Kleine Änderungen im Ausgangszustand führen nur zu kleinen Änderungen im Ergebnis.
  • Viele Systeme in der Natur sind labile Gleichgewichtszustände. Hier liegt keine starke Kausalität vor.

Zum Artikel Zu den Aufgaben

Kausalitätsprinzip - Grenzen der NEWTONschen Mechanik

Grundwissen

  • Würde man einen Zustand vollständig kennen, könnte man mit Hilfe der Naturgesetze alle Folgen daraus ableiten.
  • Damit wäre alles Geschehen der Welt unabänderlich bestimmt (Determinismus).
  • Die Quantenmechanik und die Relativitätstheorie machen jedoch die Grenzen des Determinismus deutlich.

Zum Artikel
Grundwissen

  • Würde man einen Zustand vollständig kennen, könnte man mit Hilfe der Naturgesetze alle Folgen daraus ableiten.
  • Damit wäre alles Geschehen der Welt unabänderlich bestimmt (Determinismus).
  • Die Quantenmechanik und die Relativitätstheorie machen jedoch die Grenzen des Determinismus deutlich.

Zum Artikel Zu den Aufgaben

Lösen von Gleichungen - Einführung

Grundwissen
Grundwissen

Big Bang Theory Effekt

Grundwissen
Grundwissen

Beugung und Interferenz - Einführung

Grundwissen

  • Beugung ist die Ablenkung einer Welle an einem Hindernis.
  • Konstruktive Interferenz bedeutet eine Verstärkung.
  • Destruktive Interferenz bedeutet eine Auslöschung.

Zum Artikel
Grundwissen

  • Beugung ist die Ablenkung einer Welle an einem Hindernis.
  • Konstruktive Interferenz bedeutet eine Verstärkung.
  • Destruktive Interferenz bedeutet eine Auslöschung.

Zum Artikel Zu den Aufgaben

Interferenz an dünnen Schichten

Grundwissen

  • Interferenz tritt häufig auch bei der Reflexion an dünnen Schichten auf - daher schimmern Seifenblasen und Ölschichten auf Wasser häufig farbig.
  • Bei der Berechnung muss der Phasensprung bei Reflexion an optisch dichterem Medium berücksichtigt werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Interferenz tritt häufig auch bei der Reflexion an dünnen Schichten auf - daher schimmern Seifenblasen und Ölschichten auf Wasser häufig farbig.
  • Bei der Berechnung muss der Phasensprung bei Reflexion an optisch dichterem Medium berücksichtigt werden.

Zum Artikel Zu den Aufgaben

Physikalische Konstanten

Grundwissen
Grundwissen

Spiegelbild - Einführung

Grundwissen

  • Das Spiegelbild befindet sich im gleichen Abstand zum Spiegel wie das Original.
  • Das Spiegelbild ist genau so groß wie das Original.
  • Das Spiegelbild eines Gegenstandes erscheint für alle Betrachter vor dem Spiegel am gleichen Ort hinter dem Spiegel.
  • Gegenstand und Spiegelbild sind symmetrisch zur der Spiegelebene.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Das Spiegelbild befindet sich im gleichen Abstand zum Spiegel wie das Original.
  • Das Spiegelbild ist genau so groß wie das Original.
  • Das Spiegelbild eines Gegenstandes erscheint für alle Betrachter vor dem Spiegel am gleichen Ort hinter dem Spiegel.
  • Gegenstand und Spiegelbild sind symmetrisch zur der Spiegelebene.

Zum Artikel Zu den Aufgaben

Spiegelbild - Fortführung

Grundwissen

Joachim Herz Stiftung
  • Das Zustandekommen eines Spiegelbildes lässt sich mit dem Reflexionsgesetz erklären.
  • Der Strahlengang zeigt, dass Bild und Spiegelbild den gleichen Abstand zum Spiegel besitzen.
  • Das Spiegelbild ist ein virtuelles Bild, da von dem Ort, an dem man es wahrnimmt, kein Licht ausgeht.
  • Bei der Konstruktion des Spiegelbildes hilft dir die mathematische Achsenspiegelung  (Geradenspiegelung).
 

Zum Artikel Zu den Aufgaben
Grundwissen

Joachim Herz Stiftung
  • Das Zustandekommen eines Spiegelbildes lässt sich mit dem Reflexionsgesetz erklären.
  • Der Strahlengang zeigt, dass Bild und Spiegelbild den gleichen Abstand zum Spiegel besitzen.
  • Das Spiegelbild ist ein virtuelles Bild, da von dem Ort, an dem man es wahrnimmt, kein Licht ausgeht.
  • Bei der Konstruktion des Spiegelbildes hilft dir die mathematische Achsenspiegelung  (Geradenspiegelung).
 

Zum Artikel Zu den Aufgaben

Linsengleichungen

Grundwissen

  • Die Abbildungsgleichung \(\frac{B}{G} = \frac{b}{g}\) beschreibt den Zusammenhang zwischen Bildgröße \(B\), Gegenstandsgröße \(G\), Bildweite \(b\) und Gegenstandsweite \(g\) bei einer Linsenabbildung.
  • Die Linsengleichung \(\frac{1}{f}=\frac{1}{b}+\frac{1}{g}\) beschreibt den Zusammenhang zwischen Brennweite \(f\), Gegenstandsweite \(g\) und Bildweite \(b\) bei einer Linsenabbildung.
  • Die Linsengleichung kann mithilfe der Hauptstrahlen und des Strahlensatzes hergeleitet werden.
  • Die Linsengleichung gilt sowohl für Sammel- als auch Zerstreuungslinsen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Abbildungsgleichung \(\frac{B}{G} = \frac{b}{g}\) beschreibt den Zusammenhang zwischen Bildgröße \(B\), Gegenstandsgröße \(G\), Bildweite \(b\) und Gegenstandsweite \(g\) bei einer Linsenabbildung.
  • Die Linsengleichung \(\frac{1}{f}=\frac{1}{b}+\frac{1}{g}\) beschreibt den Zusammenhang zwischen Brennweite \(f\), Gegenstandsweite \(g\) und Bildweite \(b\) bei einer Linsenabbildung.
  • Die Linsengleichung kann mithilfe der Hauptstrahlen und des Strahlensatzes hergeleitet werden.
  • Die Linsengleichung gilt sowohl für Sammel- als auch Zerstreuungslinsen.

Zum Artikel Zu den Aufgaben

Stoffverhalten

Grundwissen

  • Absorption - der Gegenstand nimmt das Licht "in sich" auf
  • regelmäßige Reflexion - der Gegenstand reflektiert das Licht in eine bestimmte Richtung
  • Streuung - der Gegenstand streut das Licht in verschiedenste Richtungen
  • Durchlassen des Lichtes (Durchsichtigkeit) - der Gegenstand lässt das Licht unverändert durch sich hindurch.

In der Regel treten mehrere dieser Phänomene gleichzeitig auf.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Absorption - der Gegenstand nimmt das Licht "in sich" auf
  • regelmäßige Reflexion - der Gegenstand reflektiert das Licht in eine bestimmte Richtung
  • Streuung - der Gegenstand streut das Licht in verschiedenste Richtungen
  • Durchlassen des Lichtes (Durchsichtigkeit) - der Gegenstand lässt das Licht unverändert durch sich hindurch.

In der Regel treten mehrere dieser Phänomene gleichzeitig auf.

Zum Artikel Zu den Aufgaben

Umgekehrte Proportionalität

Grundwissen

  • Bei zwei zueinander umgekehrt proportionalen Größen gehört zum Doppelten, Dreifachen, ... n-fachen der Größe \(x\) die Hälfte, ein Drittel, ... ein n-tel der Größe \(y\).
  • Zwei zueinander umgekehrt proportionale Größen sind produktgleich. Das Produkt \(x\cdot y\) nennt man die Proportionalitätskonstante (Proportionalitätsfaktor).
  • Anstelle des Begriffs umgekehrt proportional werden auch die Begriffe antiproportional und indirekt proportional genutzt.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei zwei zueinander umgekehrt proportionalen Größen gehört zum Doppelten, Dreifachen, ... n-fachen der Größe \(x\) die Hälfte, ein Drittel, ... ein n-tel der Größe \(y\).
  • Zwei zueinander umgekehrt proportionale Größen sind produktgleich. Das Produkt \(x\cdot y\) nennt man die Proportionalitätskonstante (Proportionalitätsfaktor).
  • Anstelle des Begriffs umgekehrt proportional werden auch die Begriffe antiproportional und indirekt proportional genutzt.

Zum Artikel Zu den Aufgaben

Zehnerpotenzen - Präfixe

Grundwissen

  • Mit Zehnerpotenzen kannst du sehr große und sehr kleine Größen übersichtlich schreiben.
  • Auch mit passenden Präfixen (Vorsilben) vor der Einheit kannst du Größen übersichtlich angeben.

Zum Artikel
Grundwissen

  • Mit Zehnerpotenzen kannst du sehr große und sehr kleine Größen übersichtlich schreiben.
  • Auch mit passenden Präfixen (Vorsilben) vor der Einheit kannst du Größen übersichtlich angeben.

Zum Artikel Zu den Aufgaben

Volumen- und Längenänderung von Festkörpern

Grundwissen

  • Festkörper dehnen sich beim Erwärmen i.d.R. in alle Raumrichtung gleichmäßig aus.
  • Bei Festkörpern gibt man oft den Längenausdehnungskoeffizienten \(\alpha\) an.
  • Für die Längenänderung gilt \(\Delta l = \alpha \cdot {l_0} \cdot \Delta \vartheta\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Festkörper dehnen sich beim Erwärmen i.d.R. in alle Raumrichtung gleichmäßig aus.
  • Bei Festkörpern gibt man oft den Längenausdehnungskoeffizienten \(\alpha\) an.
  • Für die Längenänderung gilt \(\Delta l = \alpha \cdot {l_0} \cdot \Delta \vartheta\).

Zum Artikel Zu den Aufgaben

Viertakt-Ottomotor

Grundwissen

  • Die 4 Takte sind: Ansaugen, Verdichten, Arbeiten, Auspuffen
  • Mehrere Zylinder eines Motors laufen versetzt. Ziel ist, dass immer ein Zylinder gerade im Arbeitstakt ist.
  • Der Wirkungsgrad eines Ottomotors liegt im Idealfall bei \(\eta=35\,\%\), meist jedoch deutlich darunter.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die 4 Takte sind: Ansaugen, Verdichten, Arbeiten, Auspuffen
  • Mehrere Zylinder eines Motors laufen versetzt. Ziel ist, dass immer ein Zylinder gerade im Arbeitstakt ist.
  • Der Wirkungsgrad eines Ottomotors liegt im Idealfall bei \(\eta=35\,\%\), meist jedoch deutlich darunter.

Zum Artikel Zu den Aufgaben