Direkt zum Inhalt
Suchergebnisse 931 - 960 von 1027

Energieaufnahme von Atomen durch (Resonanz-)Absorption von Photonen

Grundwissen

  • Atome können beim Aufeinandertreffen mit Photonen angeregt werden.
  • Die Energie des Photons muss aber exakt gleich der Energiedifferenz der verschiedenen Energiezustände sein: \({E_{{\rm{Ph}}}} = {E_m} - {E_n}\). Deshalb der Begriff "Resonanzabsorption".
  • Nach der Absorption ist das Photon komplett vernichtet.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Atome können beim Aufeinandertreffen mit Photonen angeregt werden.
  • Die Energie des Photons muss aber exakt gleich der Energiedifferenz der verschiedenen Energiezustände sein: \({E_{{\rm{Ph}}}} = {E_m} - {E_n}\). Deshalb der Begriff "Resonanzabsorption".
  • Nach der Absorption ist das Photon komplett vernichtet.

Zum Artikel Zu den Aufgaben

Energieaufnahme von Atomen durch Stoßanregung

Grundwissen

  • Atome können durch Stöße mit anderen Atomen oder Elektronen angeregt werden (Stoßanregung).
  • Je nach Energie des Teilchens, das mit einem Atom stößt, kann der Stoß elastisch, vollkommen unelastisch oder teilweise unelastisch sein.
  • Ist der Energieübertrag durch den Stoß größer als die Ionisationsenergie des Atoms, so wird das Atom ionisiert (Stoßionisation).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Atome können durch Stöße mit anderen Atomen oder Elektronen angeregt werden (Stoßanregung).
  • Je nach Energie des Teilchens, das mit einem Atom stößt, kann der Stoß elastisch, vollkommen unelastisch oder teilweise unelastisch sein.
  • Ist der Energieübertrag durch den Stoß größer als die Ionisationsenergie des Atoms, so wird das Atom ionisiert (Stoßionisation).

Zum Artikel Zu den Aufgaben

Energieabgabe von Atomen durch Emission von Photonen

Grundwissen

  • Angeregte Atome geben Energie durch die Emission von Photonen ab.
  • Diese Photon werden erst bei der Emission erzeugt, d.h. sie waren vorher nicht im Atom vorhanden.
  • Die Energie der emittierten Photonen ist immer gleich der Differenz der Energien zweier Energieniveaus des Atoms.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Angeregte Atome geben Energie durch die Emission von Photonen ab.
  • Diese Photon werden erst bei der Emission erzeugt, d.h. sie waren vorher nicht im Atom vorhanden.
  • Die Energie der emittierten Photonen ist immer gleich der Differenz der Energien zweier Energieniveaus des Atoms.

Zum Artikel Zu den Aufgaben

Energiezustände von Wasserstoff und verwandten Atomen

Grundwissen

  • Die Energiezustände des Wasserstoffatoms sind \({E_n} =  - 13{,}6\,{\rm{eV}} \cdot \frac{1}{{{n^2}}}\;;\;n \in \left\{ {1\;;\;2\;;\;3 \;;\;...} \right\}\)
  • Damit können auch die Wellenlängen \(\lambda\) der bei Wasserstoffübergängen möglichen Photonen berechnet werden.
  • Die Energiezustände von Einelektronensystemen von Atomen mit der Kernladungszahl \(Z\) sind \({E_n} =  - 13{,}6\,{\rm{eV}} \cdot \frac{Z^2}{{{n^2}}}\;;\;n \in \left\{ {1\;;\;2\;;\;3 \;;\;...} \right\}\)
  • Die Energiezustände von RYDBERG-Zustände aller Atomarten entsprechen den einfachen Verhältnissen beim Wasserstoffatom.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Energiezustände des Wasserstoffatoms sind \({E_n} =  - 13{,}6\,{\rm{eV}} \cdot \frac{1}{{{n^2}}}\;;\;n \in \left\{ {1\;;\;2\;;\;3 \;;\;...} \right\}\)
  • Damit können auch die Wellenlängen \(\lambda\) der bei Wasserstoffübergängen möglichen Photonen berechnet werden.
  • Die Energiezustände von Einelektronensystemen von Atomen mit der Kernladungszahl \(Z\) sind \({E_n} =  - 13{,}6\,{\rm{eV}} \cdot \frac{Z^2}{{{n^2}}}\;;\;n \in \left\{ {1\;;\;2\;;\;3 \;;\;...} \right\}\)
  • Die Energiezustände von RYDBERG-Zustände aller Atomarten entsprechen den einfachen Verhältnissen beim Wasserstoffatom.

Zum Artikel Zu den Aufgaben

Erzeugung von RÖNTGEN-Strahlung

Grundwissen

  • In RÖNTGEN-Röhren werden Elektronen stark beschleunigt und treffen dann auf eine Anode aus Metall.
  • Die Beschleunigungsspannungen betragen meist zwischen \(1\,\rm{kV}\) und \(100\,\rm{kV}\).
  • Beim Abbremsen der Elektronen im Anodenmaterial entsteht RÖNTGEN-Strahlung (Bremsstrahlung und Charakteristische Strahlung) und Wärme.
  • Die Wellenlänge von RÖNTGEN-Strahlung liegt etwa zwischen \(1\,\rm{nm}\) und \(1\,\rm{pm}\).

Zum Artikel
Grundwissen

  • In RÖNTGEN-Röhren werden Elektronen stark beschleunigt und treffen dann auf eine Anode aus Metall.
  • Die Beschleunigungsspannungen betragen meist zwischen \(1\,\rm{kV}\) und \(100\,\rm{kV}\).
  • Beim Abbremsen der Elektronen im Anodenmaterial entsteht RÖNTGEN-Strahlung (Bremsstrahlung und Charakteristische Strahlung) und Wärme.
  • Die Wellenlänge von RÖNTGEN-Strahlung liegt etwa zwischen \(1\,\rm{nm}\) und \(1\,\rm{pm}\).

Zum Artikel Zu den Aufgaben

Volumenbestimmung

Grundwissen

  • Das Volumen regelmäßiger Festkörper kannst du berechnen.
  • Das Volumen unregelmäßiger Festkörper kannst du über ihre Verdrängung von Wasser bestimmen.
  • Flüssigkeiten füllst du zur Volumenbestimmung in einen Messzylinder.

Zum Artikel
Grundwissen

  • Das Volumen regelmäßiger Festkörper kannst du berechnen.
  • Das Volumen unregelmäßiger Festkörper kannst du über ihre Verdrängung von Wasser bestimmen.
  • Flüssigkeiten füllst du zur Volumenbestimmung in einen Messzylinder.

Zum Artikel Zu den Aufgaben

Helium-Neon-Laser

Grundwissen

  • Neon-Atome sind das laseraktive Medium
  • Am Prozess sind vier Energieniveaus beteiligt - es ist ein "Vier-Niveau-System"
  • Helium-Neon-Laser emittiert rotes Licht der Wellenlänge \(\lambda=633\,\rm{nm}\)

Zum Artikel
Grundwissen

  • Neon-Atome sind das laseraktive Medium
  • Am Prozess sind vier Energieniveaus beteiligt - es ist ein "Vier-Niveau-System"
  • Helium-Neon-Laser emittiert rotes Licht der Wellenlänge \(\lambda=633\,\rm{nm}\)

Zum Artikel Zu den Aufgaben

Exotische Atome

Grundwissen

  • Bei exotischen Atomen ist mindestens eines der beteiligten Teilchen kein gewöhnliches Atom-Bestandteil.
  • Beispiele für exotische Atome sind Myonische Atome oder Antimaterie wie Antiwasserstoff.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei exotischen Atomen ist mindestens eines der beteiligten Teilchen kein gewöhnliches Atom-Bestandteil.
  • Beispiele für exotische Atome sind Myonische Atome oder Antimaterie wie Antiwasserstoff.

Zum Artikel Zu den Aufgaben

RYDBERG-Atome

Grundwissen

  • RYDBERG-Atome sind Atome in sehr hohen Anregungszuständen.
  • Die Theorie von Bohr kann sehr gut auf RYDBERG-Atome angewendet werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • RYDBERG-Atome sind Atome in sehr hohen Anregungszuständen.
  • Die Theorie von Bohr kann sehr gut auf RYDBERG-Atome angewendet werden.

Zum Artikel Zu den Aufgaben

Energiezustände im BOHRschen Atommodell

Grundwissen

  • Durch die Quantenbedingung von BOHR kann die Energie eines Atoms nur bestimmte Werte annehmen.
  • Die Energie, um Wasserstoff aus dem Grundzustand heraus zu ionisieren beträgt \(13{,}6\,\rm{eV}\) (Ionisierungsenergie).
  • Die Gesamtenergie eines Elektrons im Wasserstoffatom gilt \({E_{{\rm{ges}}{\rm{,n}}}} = - R_{\infty} \cdot h \cdot c \cdot \frac{1}{{{n^2}}}\), wobei \(R_{\infty}\) die Rydberg-Konstante ist.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Durch die Quantenbedingung von BOHR kann die Energie eines Atoms nur bestimmte Werte annehmen.
  • Die Energie, um Wasserstoff aus dem Grundzustand heraus zu ionisieren beträgt \(13{,}6\,\rm{eV}\) (Ionisierungsenergie).
  • Die Gesamtenergie eines Elektrons im Wasserstoffatom gilt \({E_{{\rm{ges}}{\rm{,n}}}} = - R_{\infty} \cdot h \cdot c \cdot \frac{1}{{{n^2}}}\), wobei \(R_{\infty}\) die Rydberg-Konstante ist.

Zum Artikel Zu den Aufgaben

Gezeiten

Grundwissen

  • Den Wechsel von einem Niedrigwasser zum nächsten nennt man Tide.
  • Die Dauer einer Tide beträgt ca. 12 Stunden und 25 Minuten. Deswegen verschiebt sich die Ebbe bzw. die Flut von Tag zu Tag um 50 Minuten.
  • Der Mond und die Kreisbewegung der Erde um das Baryzentrum sind maßgeblich für Ebbe und Flut verantwortlich

Zum Artikel
Grundwissen

  • Den Wechsel von einem Niedrigwasser zum nächsten nennt man Tide.
  • Die Dauer einer Tide beträgt ca. 12 Stunden und 25 Minuten. Deswegen verschiebt sich die Ebbe bzw. die Flut von Tag zu Tag um 50 Minuten.
  • Der Mond und die Kreisbewegung der Erde um das Baryzentrum sind maßgeblich für Ebbe und Flut verantwortlich

Zum Artikel Zu den Aufgaben

Bauanleitung Lochkamera

Download ( Unterrichtsmaterial )

Eine Lochkamera lässt sich mit Ton- und Transpanrentpapier selbst bauen. In dieser Anleitung ist zusätzlich beschrieben, wie die Lochkamera mit einem…

Zum Download
Download ( Unterrichtsmaterial )

Eine Lochkamera lässt sich mit Ton- und Transpanrentpapier selbst bauen. In dieser Anleitung ist zusätzlich beschrieben, wie die Lochkamera mit einem…

Zum Download

Kran aus der Römerzeit - Aufgabe (Animation)

Download ( Animationen )

Die Animation zeigt den Aufbau und die Funktionsweise eines Krans aus der Römerzeit.

Zum Download
Download ( Animationen )

Die Animation zeigt den Aufbau und die Funktionsweise eines Krans aus der Römerzeit.

Zum Download

Kran aus der Römerzeit - Lösung (Animation)

Download ( Animationen )

Die Animation zeigt den Aufbau und die Funktionsweise eines Krans aus der Römerzeit.

Zum Download
Download ( Animationen )

Die Animation zeigt den Aufbau und die Funktionsweise eines Krans aus der Römerzeit.

Zum Download

Blattfederpendel stehend (Animation)

Download ( Animationen )

Die Animation zeigt die Bewegung eines stehenden Blattfederpendels und einige Größen, die zur Beschreibung der Bewegung wichtig sind.

Zum Download
Download ( Animationen )

Die Animation zeigt die Bewegung eines stehenden Blattfederpendels und einige Größen, die zur Beschreibung der Bewegung wichtig sind.

Zum Download

Prallender Ball (Animation)

Download ( Animationen )

Die Animation zeigt die Bewegung eines prallenden Balls und einige Größen, die zur Beschreibung der Bewegung wichtig sind.

Zum Download
Download ( Animationen )

Die Animation zeigt die Bewegung eines prallenden Balls und einige Größen, die zur Beschreibung der Bewegung wichtig sind.

Zum Download

Trampolin (Animation)

Download ( Animationen )

Die Animation zeigt die Bewegung eines Körpers auf einem Trampolin und einige Größen, die zur Beschreibung der Bewegung wichtig sind.

Zum Download
Download ( Animationen )

Die Animation zeigt die Bewegung eines Körpers auf einem Trampolin und einige Größen, die zur Beschreibung der Bewegung wichtig sind.

Zum Download

Feder-Schwere-Pendel (Animation)

Download ( Animationen )

Die Animation zeigt die Bewegung eines Feder-Schwere-Pendels und einige Größen, die zur Beschreibung der Bewegung wichtig sind.

Zum Download
Download ( Animationen )

Die Animation zeigt die Bewegung eines Feder-Schwere-Pendels und einige Größen, die zur Beschreibung der Bewegung wichtig sind.

Zum Download

Feder-Schwere-Pendel - Detail (Animation)

Download ( Animationen )

Die Animation zeigt die Bewegung eines Feder-Schwere-Pendels und insbesondere die Größen, die zur Beschreibung der Federkraft wichtig sind.

Zum Download
Download ( Animationen )

Die Animation zeigt die Bewegung eines Feder-Schwere-Pendels und insbesondere die Größen, die zur Beschreibung der Federkraft wichtig sind.

Zum Download

Fadenpendel - Graphen (Animation)

Download ( Animationen )

Die Animation zeigt die Graphen von Ort, Geschwindigkeit, Beschleunigung, rücktreibender Kraft, tangentialer Komponente der Gewichtskraft,…

Zum Download
Download ( Animationen )

Die Animation zeigt die Graphen von Ort, Geschwindigkeit, Beschleunigung, rücktreibender Kraft, tangentialer Komponente der Gewichtskraft,…

Zum Download

Feder-Schwere-Pendel - Graphen (Animation)

Download ( Animationen )

Die Animation zeigt die Graphen von Ort, Geschwindigkeit, Beschleunigung, Gewichts-, Feder- und rücktreibender Kraft sowie kinetischer, potentieller…

Zum Download
Download ( Animationen )

Die Animation zeigt die Graphen von Ort, Geschwindigkeit, Beschleunigung, Gewichts-, Feder- und rücktreibender Kraft sowie kinetischer, potentieller…

Zum Download

Schwingende Boje - Gesamt (Animation)

Download ( Animationen )

Die Animation zeigt die Bewegung einer schwingenden Boje im Wasser und einige Größen, die zur Beschreibung der Bewegung wichtig sind.

Zum Download
Download ( Animationen )

Die Animation zeigt die Bewegung einer schwingenden Boje im Wasser und einige Größen, die zur Beschreibung der Bewegung wichtig sind.

Zum Download

Schwingende Boje - Detail (Animation)

Download ( Animationen )

Die Animation zeigt die Bewegung einer schwingenden Boje im Wasser und insbesondere die Größen, die zur Beschreibung der Auftriebskraft wichtig sind.

Zum Download
Download ( Animationen )

Die Animation zeigt die Bewegung einer schwingenden Boje im Wasser und insbesondere die Größen, die zur Beschreibung der Auftriebskraft wichtig sind.

Zum Download

Blattfederpendel hängend (Animation)

Download ( Animationen )

Die Animation zeigt die Bewegung eines hängenden Blattfederpendels und einige Größen, die zur Beschreibung der Bewegung wichtig sind.

Zum Download
Download ( Animationen )

Die Animation zeigt die Bewegung eines hängenden Blattfederpendels und einige Größen, die zur Beschreibung der Bewegung wichtig sind.

Zum Download

Interferenz von Wellen (Simulation)

Download ( Simulation )

Die Simulation wird zur Verfügung gestellt von: PhET Interactive Simulations University of Colorado…

Zum Download
Download ( Simulation )

Die Simulation wird zur Verfügung gestellt von: PhET Interactive Simulations University of Colorado…

Zum Download

Energieformen und Energieumwandlungen (Simulation)

Download ( Simulation )

Die Simulation wird zur Verfügung gestellt von: PhET Interactive Simulations University of Colorado…

Zum Download
Download ( Simulation )

Die Simulation wird zur Verfügung gestellt von: PhET Interactive Simulations University of Colorado…

Zum Download

Schweredruck in Flüssigkeiten (Simulation)

Download ( Simulation )

Diese Simulation demonstriert die Messung des Schweredrucks (auch als hydrostatischer Druck bezeichnet) in einer Flüssigkeit mithilfe einer…

Zum Download
Download ( Simulation )

Diese Simulation demonstriert die Messung des Schweredrucks (auch als hydrostatischer Druck bezeichnet) in einer Flüssigkeit mithilfe einer…

Zum Download

Wie korrigieren Kontaktlinsen deine Sehschärfe?

Download ( Animationen )

Die Simulation wird zur Verfügung gestellt von: ©CK-12 Foundation Licensed under • Terms of Use • Attribution  

Zum Download
Download ( Animationen )

Die Simulation wird zur Verfügung gestellt von: ©CK-12 Foundation Licensed under • Terms of Use • Attribution  

Zum Download

Pfeil und Bogen (CK-12-Simulation)

Download ( Animationen )

Die Simulation wird zur Verfügung gestellt von https://www.ck12.org. https://www.ck12.org …

Zum Download
Download ( Animationen )

Die Simulation wird zur Verfügung gestellt von https://www.ck12.org. https://www.ck12.org …

Zum Download

Kannst du den Scooter deiner Freundin kräftiger anstoßen als sie dich anstößt?

Download ( Animationen )

Die Simulation wird zur Verfügung gestellt von: ©CK-12 Foundation Licensed under • Terms of Use • Attribution  

Zum Download
Download ( Animationen )

Die Simulation wird zur Verfügung gestellt von: ©CK-12 Foundation Licensed under • Terms of Use • Attribution  

Zum Download