Direkt zum Inhalt
Suchergebnisse 61 - 90 von 91

Wärmemitführung

Grundwissen

  • Bei der Wärmemitführung (Wärmeströmung, Konvektion) bewegt sich die Wärme mit den einzelnen Teilchen, aus denen der Körper besteht, durch den Körper hindurch - es findet also auch ein Materietransport statt
  • Wärmemitführung tritt in der Regel nur in Flüssigkeiten und Gasen auf.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei der Wärmemitführung (Wärmeströmung, Konvektion) bewegt sich die Wärme mit den einzelnen Teilchen, aus denen der Körper besteht, durch den Körper hindurch - es findet also auch ein Materietransport statt
  • Wärmemitführung tritt in der Regel nur in Flüssigkeiten und Gasen auf.

Zum Artikel Zu den Aufgaben

Treibhauseffekt

Grundwissen

  • Man unterscheidet zwischen natürlichem und vom Menschen gemachten Treibhauseffekt.
  • Der natürliche Treibhauseffekt macht die Erde erst lebenswert.
  • Der menschengemachte Treibhauseffekt durch Ausstoß von Treibhausgasen sorgt für eine weitere Erderwärmung mit vielen negativen Folgen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Man unterscheidet zwischen natürlichem und vom Menschen gemachten Treibhauseffekt.
  • Der natürliche Treibhauseffekt macht die Erde erst lebenswert.
  • Der menschengemachte Treibhauseffekt durch Ausstoß von Treibhausgasen sorgt für eine weitere Erderwärmung mit vielen negativen Folgen.

Zum Artikel Zu den Aufgaben

Gesetz von AMONTONS

Grundwissen

  • Wird eine feste Menge (konstante Teilchenzahl \(N\)) eines Idealen Gases auf einem konstanten Volumen \(V\) gehalten, während sich die Temperatur oder der Druck der Gasmenge ändern, so spricht man von einer isochoren Zustandsänderung der Gasmenge.
  • Bei derartigen isochoren Zustandsänderungen ist der Druck \(p\) proportional zur Temperatur \(T\)\[p \sim T\;\;\;\rm{bzw.}\;\;\;\frac{p}{T} \;\rm{ist\;konstant}\;\;\;\rm{bzw.}\;\;\;\frac{p_1}{T_1} = \frac{p_2}{T_2}\]

Zum Artikel Zu den Aufgaben
Grundwissen

  • Wird eine feste Menge (konstante Teilchenzahl \(N\)) eines Idealen Gases auf einem konstanten Volumen \(V\) gehalten, während sich die Temperatur oder der Druck der Gasmenge ändern, so spricht man von einer isochoren Zustandsänderung der Gasmenge.
  • Bei derartigen isochoren Zustandsänderungen ist der Druck \(p\) proportional zur Temperatur \(T\)\[p \sim T\;\;\;\rm{bzw.}\;\;\;\frac{p}{T} \;\rm{ist\;konstant}\;\;\;\rm{bzw.}\;\;\;\frac{p_1}{T_1} = \frac{p_2}{T_2}\]

Zum Artikel Zu den Aufgaben

Volumenänderung von Flüssigkeiten

Grundwissen

  • Flüssigkeiten dehnen sich in der Regel beim Erwärmen unterschiedlich stark aus.
  • Die Volumenänderung hängt vom Raumausdehnungskoeffizienten der Flüssigkeit ab.
  • Wasser verhält sich bei niedrigen Temperaturen knapp über dem Gefrierpunkt anomal.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Flüssigkeiten dehnen sich in der Regel beim Erwärmen unterschiedlich stark aus.
  • Die Volumenänderung hängt vom Raumausdehnungskoeffizienten der Flüssigkeit ab.
  • Wasser verhält sich bei niedrigen Temperaturen knapp über dem Gefrierpunkt anomal.

Zum Artikel Zu den Aufgaben

Volumenänderung von Gasen

Grundwissen

  • Gase dehnen sich beim Erwärmen stark aus.
  • Verschiedene Gase zeigen bei ihrem Ausdehnungsverhalten kaum Unterschiede.
  • Bei Messungen ist auf konstanten Druck zu achten.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Gase dehnen sich beim Erwärmen stark aus.
  • Verschiedene Gase zeigen bei ihrem Ausdehnungsverhalten kaum Unterschiede.
  • Bei Messungen ist auf konstanten Druck zu achten.

Zum Artikel Zu den Aufgaben

Anomalie des Wassers

Grundwissen

  • Wasser besitzt seine größte Dichte bei 4 °C.
  • Unterhalb von 4 °C nimmt die Dichte wieder ab.
  • Wasser besitzt eine größere Dichte als Eis.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Wasser besitzt seine größte Dichte bei 4 °C.
  • Unterhalb von 4 °C nimmt die Dichte wieder ab.
  • Wasser besitzt eine größere Dichte als Eis.

Zum Artikel Zu den Aufgaben

Spezifische Wärmekapazität

Grundwissen

  • Die spezifische Wärmekapazität ist eine Materialkonstante.
  • Die spezifische Wärmekapazitätist ein Maß für diejenige Energie, die man benötigt, um \(1\,\rm{kg}\) eines Stoffes um \(1\,\rm{K}\) zu erwärmen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die spezifische Wärmekapazität ist eine Materialkonstante.
  • Die spezifische Wärmekapazitätist ein Maß für diejenige Energie, die man benötigt, um \(1\,\rm{kg}\) eines Stoffes um \(1\,\rm{K}\) zu erwärmen.

Zum Artikel Zu den Aufgaben

Spezifische Schmelz- und Verdampfungswärme

Grundwissen

  • Wenn die Bindungen der Teilchen bei einem Übergang loser wird, muss Energie hinzugefügt werden (fest->flüssig, flüssig->gasförmig, fest->gasförmig).
  • Wenn die Bindungen der Teilchen bei einem Übergang fester wird, wird Energie frei (gasförmig->flüssig, flüssig->fest, gasförmig->fest).
  • Die spezifische Schmelz- bzw. Verdampfungswärme ist eine Materialkonstante, die häufig in \(\rm{\frac{J}{kg}}\) angegeben wird.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Wenn die Bindungen der Teilchen bei einem Übergang loser wird, muss Energie hinzugefügt werden (fest->flüssig, flüssig->gasförmig, fest->gasförmig).
  • Wenn die Bindungen der Teilchen bei einem Übergang fester wird, wird Energie frei (gasförmig->flüssig, flüssig->fest, gasförmig->fest).
  • Die spezifische Schmelz- bzw. Verdampfungswärme ist eine Materialkonstante, die häufig in \(\rm{\frac{J}{kg}}\) angegeben wird.

Zum Artikel Zu den Aufgaben

Wärmekraftmaschine, Kältemaschine und Wärmepumpe

Grundwissen

  • Wärmekraftmaschinen (z.B. Dampfmaschine oder Benzinmotor) nutzen Temperaturdifferenzen aus, um hiermit Arbeit \(W\) zu verrichten.
  • Dabei fließt eine Wärmemenge \(Q\) von einem Reservoir höherer Temperatur in ein Gebiet mit niedrigerer Temperatur.
  • Kältemaschinen (z.B. Kühlschrank) und Wärmepumpen verrichten Arbeit \(W\), um eine Wärmemenge \(Q\) von niedrigem auf ein höheres Energieniveau zu transportieren.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Wärmekraftmaschinen (z.B. Dampfmaschine oder Benzinmotor) nutzen Temperaturdifferenzen aus, um hiermit Arbeit \(W\) zu verrichten.
  • Dabei fließt eine Wärmemenge \(Q\) von einem Reservoir höherer Temperatur in ein Gebiet mit niedrigerer Temperatur.
  • Kältemaschinen (z.B. Kühlschrank) und Wärmepumpen verrichten Arbeit \(W\), um eine Wärmemenge \(Q\) von niedrigem auf ein höheres Energieniveau zu transportieren.

Zum Artikel Zu den Aufgaben

Strahlungshaushalt der Erde

Grundwissen

  • Als Mittelwert für die Energieeinstrahlung durch die Sonne gelten \(341\,\rm{\frac{W}{m^2}}\), also etwa ein Viertel der Solarkonstanten \(S_0\)
  • Insgesamt ist der Strahlungshaushalt immer in etwa ausgeglichen: Die eingestrahlte Energie entspricht in etwa der abgestrahlten Energie.
  • Beim Strahlungshaushalt der Erde müssen viele Variablen berücksichtigt werden, Darstellungen sind daher immer vereinfacht.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Als Mittelwert für die Energieeinstrahlung durch die Sonne gelten \(341\,\rm{\frac{W}{m^2}}\), also etwa ein Viertel der Solarkonstanten \(S_0\)
  • Insgesamt ist der Strahlungshaushalt immer in etwa ausgeglichen: Die eingestrahlte Energie entspricht in etwa der abgestrahlten Energie.
  • Beim Strahlungshaushalt der Erde müssen viele Variablen berücksichtigt werden, Darstellungen sind daher immer vereinfacht.

Zum Artikel Zu den Aufgaben

Anders CELSIUS (1701 - 1744)

Geschichte
Geschichte

Ballonfahrt-Geschichte

Geschichte
Geschichte

Gedanken zum Wärmebegriff

Geschichte
Geschichte

Molekularstrahlen

Geschichte
Geschichte

Thermometer im Wandel der Zeit

Geschichte
Geschichte

Robert BROWN (1773 - 1858)

Geschichte
Geschichte

Henri Poincaré - Pionier der Chaostheorie

Geschichte
Geschichte

Otto Stern (1888 - 1969)

Geschichte
Geschichte

Lord KELVIN (Sir William Thomson) (1824 - 1907)

Geschichte
Geschichte

Joseph-Louis GAY-LUSSAC (1778-1850)

Geschichte
Geschichte

Robert BOYLE (1627 - 1691)

Geschichte
Geschichte

James Prescott JOULE (1818 - 1889)

Geschichte
Geschichte

Ludwig BOLTZMANN (1844 - 1906)

Geschichte
Geschichte

Wärmestoff und Allgemeiner Energieerhaltungssatz

Geschichte
Geschichte

Automobilgeschichte

Geschichte
Geschichte

Herons Dampfantrieb

Geschichte
Geschichte

James WATT (1736 - 1819)

Geschichte
Geschichte

Rudolf DIESEL (1858 - 1913)

Geschichte
Geschichte

Dampfmaschine und Industrialisierung

Geschichte
Geschichte