Direkt zum Inhalt
Suchergebnisse 121 - 150 von 194

Teilchenphysikaspekte in der klassischen Physik

Grundwissen

  • Auch bei Themen der klassischen Physik werden an vielen Stellen Teilchenaspekte deutlich.
  • Beispiele sind die \(\beta\)-Strahlung und das AEgIS-Experiment als Anwendung des waagerechten Wurfs.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Auch bei Themen der klassischen Physik werden an vielen Stellen Teilchenaspekte deutlich.
  • Beispiele sind die \(\beta\)-Strahlung und das AEgIS-Experiment als Anwendung des waagerechten Wurfs.

Zum Artikel Zu den Aufgaben

Biologische Strahlenwirkung

Grundwissen

  • Man muss unterscheiden, ob die Bestrahlung von außen erfolgt oder vom Inneren des Körpers ausgeht.
  • \(\alpha\)- und \(\beta\)-Strahlung sind besonders gefährlich, wenn ihre Quellen durch Luft oder Nahrung in den Körper aufgenommen wurden.
  • Man unterscheidet stochastische und deterministische Strahlenschäden.

Zum Artikel
Grundwissen

  • Man muss unterscheiden, ob die Bestrahlung von außen erfolgt oder vom Inneren des Körpers ausgeht.
  • \(\alpha\)- und \(\beta\)-Strahlung sind besonders gefährlich, wenn ihre Quellen durch Luft oder Nahrung in den Körper aufgenommen wurden.
  • Man unterscheidet stochastische und deterministische Strahlenschäden.

Zum Artikel Zu den Aufgaben

Dosimetrie und Dosiseinheiten

Grundwissen

Zur Beschreibung der biologischen Wirkung von ionisierender Strahlung führt man den Begriff der Dosis ein. Dabei unterscheidet man verschiedene Dosisarten.

  • Die Energiedosis \(D\), die ein Körper durch ionisierende Strahlung erhält, ist der Quotient aus der von dem Körper absorbierten Strahlungsenergie \(E\) und der Masse \(m\) des Körpers: \(D=\frac{E}{m}\). Die Energiedosis ist Grundlage der Dosimetrie im Strahlenschutz.
  • Die Ionendosis \(J\), die ein Körper durch ionisierende Strahlung erhält, ist der Quotient aus der durch Ionisation in dem Körper freiwerdenen elektrischen Ladung \(Q\) gleichen Vorzeichens und der Masse \(m\) des Körpers: \(J=\frac{Q}{m}\).
  • Die Äquivalentdosis \(H\), die ein Körper durch eine Energiedosis einer bestimmten Strahlung erhält, ist das Produkt aus der Energiedosis \(D\) und dem Strahlungswichtungsfaktor \(w_{\rm{R}}\) der Strahlung: \(H=w_{\rm{R}} \cdot D\).
  • Die effektive Dosis \(E\), die ein Organ/Gewebe durch eine Äquivalentdosis erhält, ist das Produkt aus der Äquivalentdosis \(H\) und dem Gewebewichtungsfaktor \(w_{\rm{T}}\) des absorbierenden Organs/Gewebes: \(E=w_{\rm{T}} \cdot H\).

Zum Artikel Zu den Aufgaben
Grundwissen

Zur Beschreibung der biologischen Wirkung von ionisierender Strahlung führt man den Begriff der Dosis ein. Dabei unterscheidet man verschiedene Dosisarten.

  • Die Energiedosis \(D\), die ein Körper durch ionisierende Strahlung erhält, ist der Quotient aus der von dem Körper absorbierten Strahlungsenergie \(E\) und der Masse \(m\) des Körpers: \(D=\frac{E}{m}\). Die Energiedosis ist Grundlage der Dosimetrie im Strahlenschutz.
  • Die Ionendosis \(J\), die ein Körper durch ionisierende Strahlung erhält, ist der Quotient aus der durch Ionisation in dem Körper freiwerdenen elektrischen Ladung \(Q\) gleichen Vorzeichens und der Masse \(m\) des Körpers: \(J=\frac{Q}{m}\).
  • Die Äquivalentdosis \(H\), die ein Körper durch eine Energiedosis einer bestimmten Strahlung erhält, ist das Produkt aus der Energiedosis \(D\) und dem Strahlungswichtungsfaktor \(w_{\rm{R}}\) der Strahlung: \(H=w_{\rm{R}} \cdot D\).
  • Die effektive Dosis \(E\), die ein Organ/Gewebe durch eine Äquivalentdosis erhält, ist das Produkt aus der Äquivalentdosis \(H\) und dem Gewebewichtungsfaktor \(w_{\rm{T}}\) des absorbierenden Organs/Gewebes: \(E=w_{\rm{T}} \cdot H\).

Zum Artikel Zu den Aufgaben

FEYNMAN-Diagramme

Grundwissen

  • FEYNMAN-Diagramme sind schematische Zeit-Ort-Diagramme von Teilchen (nicht die Bahnkurven) und bieten eine übersichtliche Darstellung von Wechselwirkungsprozessen.
  • Oft haben die Diagramme äußere Linien, welche Materieteilchen darstellen und innere Linien, die Botenteilchen darstellen.
  • Wechselwirkungspunkte, an denen Linien zusammentreffen nennt man Vertices (Singular: Vertex).

Zum Artikel Zu den Aufgaben
Grundwissen

  • FEYNMAN-Diagramme sind schematische Zeit-Ort-Diagramme von Teilchen (nicht die Bahnkurven) und bieten eine übersichtliche Darstellung von Wechselwirkungsprozessen.
  • Oft haben die Diagramme äußere Linien, welche Materieteilchen darstellen und innere Linien, die Botenteilchen darstellen.
  • Wechselwirkungspunkte, an denen Linien zusammentreffen nennt man Vertices (Singular: Vertex).

Zum Artikel Zu den Aufgaben

Chadwick - Originalarbeit

Geschichte
Geschichte

Marie (1867 - 1934) und Pierre CURIE (1859 - 1906)

Geschichte
Geschichte

Von DEMOKRIT zu GELL-MANN

Geschichte
Geschichte

Lise MEITNER (1878 - 1968) und Fritz STRASSMANN (1902 - 1980)

Geschichte
Geschichte

Teilchenspuren (CK-12-Simulation)

Download ( Simulation )

Die Simulation wird zur Verfügung gestellt von https://www.ck12.org. https://www.ck12.org Lizenz:…

Zum Download
Download ( Simulation )

Die Simulation wird zur Verfügung gestellt von https://www.ck12.org. https://www.ck12.org Lizenz:…

Zum Download

Aufbau von Atomkernen

Grundwissen

  • Atomkerne bestehen aus Nukleonen. Dies sind entweder die elektrisch positiven Protonen und elektrische neutralen Neutronen.
  • Die Kernladungs- oder Ordnungszahl \(Z\) gibt die Zahl der Protonen in einem Atomkern an und bestimmt, um welches Element es sich handelt.
  • Jedes Element hat seine feste Kernladungszahl \(Z\), kann aber mehrere Isotope mit unterschiedlicher Neutronenzahlen \(N\) besitzen.
  • Die Nukleonen- oder Massenzahl \(A=Z+N\) gibt die (ungefähre) Masse eines Atomkerns bzw. des ganzen Atoms in der Maßeinheit \(\rm{u}\) an.
  • Zur eindeutigen Identifikation von Atomkernen nutzt man die Schreibweise\[_Z^A{\rm{X }} \buildrel \wedge \over = \;_{{\rm{Ordnungszahl}}}^{{\rm{Massenzahl}}}{\rm{Elementsymbol}},\;{\rm{alsoz}}.{\rm{B}}.\;_{\rm{6}}^{{\rm{14}}}{\rm{C}}\]

Zum Artikel Zu den Aufgaben
Grundwissen

  • Atomkerne bestehen aus Nukleonen. Dies sind entweder die elektrisch positiven Protonen und elektrische neutralen Neutronen.
  • Die Kernladungs- oder Ordnungszahl \(Z\) gibt die Zahl der Protonen in einem Atomkern an und bestimmt, um welches Element es sich handelt.
  • Jedes Element hat seine feste Kernladungszahl \(Z\), kann aber mehrere Isotope mit unterschiedlicher Neutronenzahlen \(N\) besitzen.
  • Die Nukleonen- oder Massenzahl \(A=Z+N\) gibt die (ungefähre) Masse eines Atomkerns bzw. des ganzen Atoms in der Maßeinheit \(\rm{u}\) an.
  • Zur eindeutigen Identifikation von Atomkernen nutzt man die Schreibweise\[_Z^A{\rm{X }} \buildrel \wedge \over = \;_{{\rm{Ordnungszahl}}}^{{\rm{Massenzahl}}}{\rm{Elementsymbol}},\;{\rm{alsoz}}.{\rm{B}}.\;_{\rm{6}}^{{\rm{14}}}{\rm{C}}\]

Zum Artikel Zu den Aufgaben

Nuklidkarte stabiler Kerne

Grundwissen

  • Verschiedene Atomkerne werden häufig in einer \(N\)-\(Z\)-Nuklidkarte dargestellt.
  • Unterschiedliche Elemente stehen jeweils in verschiedenen Zeilen, Isotope des gleichen Elementes jeweils in der gleichen Zeile.
  • Kleine, leichte Kerne besitzen ungefähr genau so viele Protonen wie Neutronen, bei großen, schweren Kernen ist die Zahl der Neutronen deutlich größer als die der Protonen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Verschiedene Atomkerne werden häufig in einer \(N\)-\(Z\)-Nuklidkarte dargestellt.
  • Unterschiedliche Elemente stehen jeweils in verschiedenen Zeilen, Isotope des gleichen Elementes jeweils in der gleichen Zeile.
  • Kleine, leichte Kerne besitzen ungefähr genau so viele Protonen wie Neutronen, bei großen, schweren Kernen ist die Zahl der Neutronen deutlich größer als die der Protonen.

Zum Artikel Zu den Aufgaben

Historische Vorstellungen zum Kernaufbau

Geschichte
Geschichte

Einsteins Gedanken zur relativistischen Energie

Geschichte
Geschichte

Relativitätsprinzip von GALILEI als Dialog zwischen Lehrer und Schüler

Geschichte
Geschichte

Zeitdilatation (Animation)

Download ( Animationen )

Diese Simulation demonstriert die Zeitdilatation: die Uhr in einem Raumschiff geht langsamer als synchronisierte Uhren in einem ruhenden System. Ein…

Zum Download
Download ( Animationen )

Diese Simulation demonstriert die Zeitdilatation: die Uhr in einem Raumschiff geht langsamer als synchronisierte Uhren in einem ruhenden System. Ein…

Zum Download

Zeitdilatation - Lichtuhr (Animation)

Download ( Animationen )

Die Animation zeigt den prinzipiellen Aufbau einer Lichtuhr. Diese besteht aus zwei Spiegeln, deren Abstand z.B. \(h=1,5\rm{m}\) ist. Wird ein…

Zum Download
Download ( Animationen )

Die Animation zeigt den prinzipiellen Aufbau einer Lichtuhr. Diese besteht aus zwei Spiegeln, deren Abstand z.B. \(h=1,5\rm{m}\) ist. Wird ein…

Zum Download

Zeitdilatation - Lichtuhr in ruhendem und bewegtem System (Animation)

Download ( Animationen )

Die Animation zeigt eine Periode einer Lichtuhr, die sich in einem Raumschiff befindet, aus verschiedenen Positionen: Dem im Raumschiff mitfliegenden…

Zum Download
Download ( Animationen )

Die Animation zeigt eine Periode einer Lichtuhr, die sich in einem Raumschiff befindet, aus verschiedenen Positionen: Dem im Raumschiff mitfliegenden…

Zum Download

Zeitdilatation - Synchronisierte Uhren (Animation)

Download ( Animationen )

Die Animation zeigt das Phänomen der Zeitdilatation: Eine relativ zu einem Beobachter bewegte Uhr geht aus der Sicht des Beobachters langsamer als der…

Zum Download
Download ( Animationen )

Die Animation zeigt das Phänomen der Zeitdilatation: Eine relativ zu einem Beobachter bewegte Uhr geht aus der Sicht des Beobachters langsamer als der…

Zum Download

Gleichzeitigkeit - Definition der Gleichzeitigkeit (Animation)

Download ( Animationen )

Die Animation veranschaulicht die Definition der Gleichzeitigkeit zweier Ereignisse: Zwei Ereignisse an verschiedenen Orten A und B eines…

Zum Download
Download ( Animationen )

Die Animation veranschaulicht die Definition der Gleichzeitigkeit zweier Ereignisse: Zwei Ereignisse an verschiedenen Orten A und B eines…

Zum Download

Gleichzeitigkeit - Relativität der Gleichzeitigkeit 1 (Animation)

Download ( Animationen )

Die Animation zeigt die prinzipielle Versuchsanordnung zur Erklärung der Relativität der Gleichzeitigkeit in zueinander bewegten Bezugssystemen.

Zum Download
Download ( Animationen )

Die Animation zeigt die prinzipielle Versuchsanordnung zur Erklärung der Relativität der Gleichzeitigkeit in zueinander bewegten Bezugssystemen.

Zum Download

Gleichzeitigkeit - Relativität der Gleichzeitigkeit 2 (Animation)

Download ( Animationen )

Die Animation zeigt, dass zwei Ereignisse, die in einem Bezugssystem gleichzeitig sind, in einem relativ dazu bewegten Bezugssystem nicht gleichzeitig…

Zum Download
Download ( Animationen )

Die Animation zeigt, dass zwei Ereignisse, die in einem Bezugssystem gleichzeitig sind, in einem relativ dazu bewegten Bezugssystem nicht gleichzeitig…

Zum Download

Gleichzeitigkeit - Relativität der Gleichzeitigkeit 3 (Animation)

Download ( Animationen )

Die Animation zeigt, dass zwei Ereignisse, die in einem Bezugssystem gleichzeitig sind, in einem relativ dazu bewegten Bezugssystem nicht gleichzeitig…

Zum Download
Download ( Animationen )

Die Animation zeigt, dass zwei Ereignisse, die in einem Bezugssystem gleichzeitig sind, in einem relativ dazu bewegten Bezugssystem nicht gleichzeitig…

Zum Download

Versuch von BUCHERER (Animation)

Download ( Animationen )

Die Animation zeigt den Aufbau des Versuchs von BUCHERER zur Bestimmung der spezifischen Ladung \(\frac{e}{m}\) von Elektronen, bestehend aus…

Zum Download
Download ( Animationen )

Die Animation zeigt den Aufbau des Versuchs von BUCHERER zur Bestimmung der spezifischen Ladung \(\frac{e}{m}\) von Elektronen, bestehend aus…

Zum Download

MICHELSON-MORLEY-Experiment (Animation)

Download ( Animationen )

Die Animation zeigt den prinzipiellen Aufbau und die Beobachtung des MICHELSON-MORLEY-Experiments: Unabhängig von der Lage des Interferometers zur…

Zum Download
Download ( Animationen )

Die Animation zeigt den prinzipiellen Aufbau und die Beobachtung des MICHELSON-MORLEY-Experiments: Unabhängig von der Lage des Interferometers zur…

Zum Download

Geschwindigkeitsaddition - klassische Geschwindigkeitsaddition (Animation)

Download ( Animationen )

Die Animation zeigt die Geschwindigkeitsaddition, wie sie aus klassischer Sicht durchgeführt wird.

Zum Download
Download ( Animationen )

Die Animation zeigt die Geschwindigkeitsaddition, wie sie aus klassischer Sicht durchgeführt wird.

Zum Download

Geschwindigkeitsaddition - Zeitmessung im ruhenden System (Animation)

Download ( Animationen )

Die Animation veranschaulicht die Messung der Zeitspanne \(\Delta t\) zwischen den Ereignissen \(E_1\) und \(E_2\) im ruhenden System.

Zum Download
Download ( Animationen )

Die Animation veranschaulicht die Messung der Zeitspanne \(\Delta t\) zwischen den Ereignissen \(E_1\) und \(E_2\) im ruhenden System.

Zum Download