Direkt zum Inhalt
Suchergebnisse 121 - 150 von 255

Chadwick - Originalarbeit

Geschichte
Geschichte

Marie (1867 - 1934) und Pierre CURIE (1859 - 1906)

Geschichte
Geschichte

Von DEMOKRIT zu GELL-MANN

Geschichte
Geschichte

Lise MEITNER (1878 - 1968) und Fritz STRASSMANN (1902 - 1980)

Geschichte
Geschichte

Teilchenspuren (CK-12-Simulation)

Versuche

  • Teilchenspuren von verschiedenen Teilchen im Magnetfeld untersuchen.
  • Verschiedene Teilchen aufgrund ihrer Spuren im Magnetfeld unterscheiden.
  • Notwendigkeit der relativistischen Korrektur verdeutlichen.

Zum Artikel
Versuche

  • Teilchenspuren von verschiedenen Teilchen im Magnetfeld untersuchen.
  • Verschiedene Teilchen aufgrund ihrer Spuren im Magnetfeld unterscheiden.
  • Notwendigkeit der relativistischen Korrektur verdeutlichen.

Zum Artikel Zu den Aufgaben

Aufbau von Atomkernen

Grundwissen

  • Atomkerne bestehen aus Nukleonen. Dies sind entweder die elektrisch positiven Protonen und elektrische neutralen Neutronen.
  • Die Kernladungs- oder Ordnungszahl \(Z\) gibt die Zahl der Protonen in einem Atomkern an und bestimmt, um welches Element es sich handelt.
  • Jedes Element hat seine feste Kernladungszahl \(Z\), kann aber mehrere Isotope mit unterschiedlicher Neutronenzahlen \(N\) besitzen.
  • Die Nukleonen- oder Massenzahl \(A=Z+N\) gibt die (ungefähre) Masse eines Atomkerns bzw. des ganzen Atoms in der Maßeinheit \(\rm{u}\) an.
  • Zur eindeutigen Identifikation von Atomkernen nutzt man die Schreibweise\[_Z^A X \overset{\wedge}{=} \ _{\rm{Orndnungszahl}}^{\rm{Massenzahl}} \text{Elementsymbol also z.B } _6^{14} \rm{C}\]

Zum Artikel Zu den Aufgaben
Grundwissen

  • Atomkerne bestehen aus Nukleonen. Dies sind entweder die elektrisch positiven Protonen und elektrische neutralen Neutronen.
  • Die Kernladungs- oder Ordnungszahl \(Z\) gibt die Zahl der Protonen in einem Atomkern an und bestimmt, um welches Element es sich handelt.
  • Jedes Element hat seine feste Kernladungszahl \(Z\), kann aber mehrere Isotope mit unterschiedlicher Neutronenzahlen \(N\) besitzen.
  • Die Nukleonen- oder Massenzahl \(A=Z+N\) gibt die (ungefähre) Masse eines Atomkerns bzw. des ganzen Atoms in der Maßeinheit \(\rm{u}\) an.
  • Zur eindeutigen Identifikation von Atomkernen nutzt man die Schreibweise\[_Z^A X \overset{\wedge}{=} \ _{\rm{Orndnungszahl}}^{\rm{Massenzahl}} \text{Elementsymbol also z.B } _6^{14} \rm{C}\]

Zum Artikel Zu den Aufgaben

Nuklidkarte stabiler Kerne

Grundwissen

  • Verschiedene Atomkerne werden häufig in einer \(N\)-\(Z\)-Nuklidkarte dargestellt.
  • Unterschiedliche Elemente stehen jeweils in verschiedenen Zeilen, Isotope des gleichen Elementes jeweils in der gleichen Zeile.
  • Kleine, leichte Kerne besitzen ungefähr genau so viele Protonen wie Neutronen, bei großen, schweren Kernen ist die Zahl der Neutronen deutlich größer als die der Protonen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Verschiedene Atomkerne werden häufig in einer \(N\)-\(Z\)-Nuklidkarte dargestellt.
  • Unterschiedliche Elemente stehen jeweils in verschiedenen Zeilen, Isotope des gleichen Elementes jeweils in der gleichen Zeile.
  • Kleine, leichte Kerne besitzen ungefähr genau so viele Protonen wie Neutronen, bei großen, schweren Kernen ist die Zahl der Neutronen deutlich größer als die der Protonen.

Zum Artikel Zu den Aufgaben

Historische Vorstellungen zum Kernaufbau

Geschichte
Geschichte

Kern-/Teilchenphysik

Anwendungen der Kernphysik

  • Wie funktioniert die Altersbestimmung von fossilen Funden?
  • Warum bestrahlt man Lebensmittel?
  • Was versteht man unter Szintigraphie?
  • Was ist die Tracermethode?

Zum Themenbereich
Themenbereich

Kern-/Teilchenphysik

Kernphysik - Grundlagen

  • Wie sind Atomkerne aufgebaut?
  • Welche Kraft hält Atomkerne zusammen?
  • Warum können Atomkerne zerfallen?
  • Was sind Isotope?

Zum Themenbereich
Themenbereich

Kern-/Teilchenphysik

Kernreaktionen

  • Wie groß sind die Bindungsenergien?
  • Was ist der Massendefekt?
  • Wie berechnet man die Energiebilanz bei Kernreaktionen?

Zum Themenbereich
Themenbereich

Kern-/Teilchenphysik

Kernspaltung und Kernfusion

  • Welche Bedeutung hat die EINSTEIN-Formel in der Kernphysik?
  • Wie viel Energie kann man bei der Kernspaltung …
  • … und wie viel bei der Kernfusion gewinnen?
  • Warum gibt es noch keine Fusionsreaktoren?

Zum Themenbereich
Themenbereich

Kern-/Teilchenphysik

Radioaktivität - Einführung

  • Gibt es verschiedene Arten ionisierender Strahlung?
  • Welche Eigenschaften hat ionisierende Strahlung?
  • Warum ist ionisierende Strahlung so gefährlich?
  • Kann man sich gegen ionisierende Strahlung schützen?

Zum Themenbereich
Themenbereich

Kern-/Teilchenphysik

Radioaktivität - Fortführung

  • Wie viel Energie wird bei einem Alpha-Zerfall …
  • … und wie viel bei einem Beta-Zerfall frei?
  • Was versteht man unter dem MÖSSBAUER-Effekt?

Zum Themenbereich
Themenbereich

Kern-/Teilchenphysik

Teilchenphysik

  • Was ist der Unterschied zwischen Teilchen …
  • … und ihren Antiteilchen?
  • Welche fundamentalen Wechselwirkungen kennen wir?
  • Wie sieht das Standardmodell der Elementarteilchen aus?

Zum Themenbereich
Themenbereich

Kern-/Teilchenphysik

Kernmodelle

  • Was hält den Atomkern zusammen?
  • Mit welchem Modell kann man Atomkerne allgemein beschreiben?
  • Was ist das Potentialtopfmodell?

Zum Themenbereich
Themenbereich

Resonanzabsorption und Resonanzfluoreszenz von Natrium

Versuche

  • Demonstration der Energieaufnahme von Atomen durch Absorption von Photonen (Resonanzabsorption)
  • Demonstration der Energieabgabe von Atomen durch Emission von Photonen (Resonanzfluoreszenz)

Zum Artikel
Versuche

  • Demonstration der Energieaufnahme von Atomen durch Absorption von Photonen (Resonanzabsorption)
  • Demonstration der Energieabgabe von Atomen durch Emission von Photonen (Resonanzfluoreszenz)

Zum Artikel Zu den Aufgaben

Mechanische Analogieversuche zu diskreten Energieniveaus

Versuche

  • Die Versuche sollen das Phänomen der diskreten Energieniveaus durch mechanische Analogien veranschaulichen.

Zum Artikel
Versuche

  • Die Versuche sollen das Phänomen der diskreten Energieniveaus durch mechanische Analogien veranschaulichen.

Zum Artikel Zu den Aufgaben

Emissionsspektren von Haushaltslampen (IBE der FU Berlin/QUA-LiS NRW)

Versuche

  • Vergleich der Emissionspektren verschiedener Haushaltslampen

Zum Artikel
Versuche

  • Vergleich der Emissionspektren verschiedener Haushaltslampen

Zum Artikel Zu den Aufgaben

Emissionsspektren von LEDs (IBE der FU Berlin/QUA-LiS NRW)

Versuche

  • Vergleich der Emissionspektren verschiedener LEDs

Zum Artikel
Versuche

  • Vergleich der Emissionspektren verschiedener LEDs

Zum Artikel Zu den Aufgaben

Emissionsspektren von Bildschirmfarben (IBE der FU Berlin/QUA-LiS NRW)

Versuche

  • Vergleich der Emissionspektren verschiedener Bildschirmfarben

Zum Artikel
Versuche

  • Vergleich der Emissionspektren verschiedener Bildschirmfarben

Zum Artikel Zu den Aufgaben

Emissionsspektren von Spektralröhren (IBE der FU Berlin/QUA-LiS NRW)

Versuche

  • Vergleich der Emissionspektren verschiedener Spektralröhren

Zum Artikel
Versuche

  • Vergleich der Emissionspektren verschiedener Spektralröhren

Zum Artikel Zu den Aufgaben

Emissionsspektrum von atomarem Wasserstoff mit der BALMER-Röhre

Versuche

  • Quantitative Untersuchung des Emissionspektrums von atomarem Wasserstoff mit der BALMER-Röhre

Zum Artikel
Versuche

  • Quantitative Untersuchung des Emissionspektrums von atomarem Wasserstoff mit der BALMER-Röhre

Zum Artikel Zu den Aufgaben

Absorptionsspektren verschiedener Materialien (IBE der FU Berlin/QUA-LiS NRW)

Versuche

  • Vergleich der Absorptionsspektren verschiedener Materialien

Zum Artikel
Versuche

  • Vergleich der Absorptionsspektren verschiedener Materialien

Zum Artikel Zu den Aufgaben

FRAUNHOFER-Linien im Sonnenspektrum (IBE der FU Berlin/QUA-LiS NRW)

Versuche

  • Untersuchung des Spektrums des Sonnenlichts

Zum Artikel
Versuche

  • Untersuchung des Spektrums des Sonnenlichts

Zum Artikel Zu den Aufgaben

Resonanzabsorption und Resonanzfluoreszenz (Simulation der FU Berlin/QUA-LiS NRW)

Versuche

  • Veranschaulichung der Vorgänge in der Atomhülle bei Resonanzabsorption und Resonanzfluoreszenz

Zum Artikel
Versuche

  • Veranschaulichung der Vorgänge in der Atomhülle bei Resonanzabsorption und Resonanzfluoreszenz

Zum Artikel Zu den Aufgaben