Direkt zum Inhalt
Suchergebnisse 841 - 870 von 888

Schiefer Stoß (Animation)

Download ( Animationen )

Die Animation zeigt den Verlauf eines schiefen Stoßes.

Zum Download
Download ( Animationen )

Die Animation zeigt den Verlauf eines schiefen Stoßes.

Zum Download

Zentraler unelastischer Stoß (Animation)

Download ( Animationen )

Die Animation zeigt den Verlauf eines zentralen unelastischen Stoßes.

Zum Download
Download ( Animationen )

Die Animation zeigt den Verlauf eines zentralen unelastischen Stoßes.

Zum Download

Rückstoß (Animation)

Download ( Animationen )

Die Animation zeigt den Verlauf eines Rückstoßes.

Zum Download
Download ( Animationen )

Die Animation zeigt den Verlauf eines Rückstoßes.

Zum Download

Zentraler elastischer Stoß - Sonderfall 1 (Animation)

Download ( Animationen )

Die Animation zeigt den Ablauf eines zentralen elastischen Stoßes mit \(m_1=m_2\) und \(v_2 = 0\,\frac{{\rm{m}}}{{\rm{s}}}\).

Zum Download
Download ( Animationen )

Die Animation zeigt den Ablauf eines zentralen elastischen Stoßes mit \(m_1=m_2\) und \(v_2 = 0\,\frac{{\rm{m}}}{{\rm{s}}}\).

Zum Download

Zentraler elastischer Stoß - Sonderfall 2 (Animation)

Download ( Animationen )

Die Animation zeigt den Ablauf eines zentralen elastischen Stoßes mit \(m_1=m_2\) und \(v_2 = -v_1\).

Zum Download
Download ( Animationen )

Die Animation zeigt den Ablauf eines zentralen elastischen Stoßes mit \(m_1=m_2\) und \(v_2 = -v_1\).

Zum Download

Zentraler elastischer Stoß - Sonderfall 3 (Animation)

Download ( Animationen )

Die Animation zeigt den Ablauf eines zentralen elastischen Stoßes mit \({m_1} \ll {m_2}\) und \(v_2 = 0\,\frac{{\rm{m}}}{{\rm{s}}}\).

Zum Download
Download ( Animationen )

Die Animation zeigt den Ablauf eines zentralen elastischen Stoßes mit \({m_1} \ll {m_2}\) und \(v_2 = 0\,\frac{{\rm{m}}}{{\rm{s}}}\).

Zum Download

Zentraler vollkommen unelastischer Stoß (Animation)

Download ( Animationen )

Die Animation zeigt den Verlauf eines zentralen vollkommen unelastischen Stoßes.

Zum Download
Download ( Animationen )

Die Animation zeigt den Verlauf eines zentralen vollkommen unelastischen Stoßes.

Zum Download

Zentraler vollkommen unelastischer Stoß - Sonderfall 1 (Animation)

Download ( Animationen )

Die Animation zeigt den Verlauf eines zentralen vollkommen unelastischen Stoßes mit \(m_1=m_2\) und \(v_2 = 0\,\frac{{\rm{m}}}{{\rm{s}}}\).

Zum Download
Download ( Animationen )

Die Animation zeigt den Verlauf eines zentralen vollkommen unelastischen Stoßes mit \(m_1=m_2\) und \(v_2 = 0\,\frac{{\rm{m}}}{{\rm{s}}}\).

Zum Download

Zentraler vollkommen unelastischer Stoß - Sonderfall 2 (Animation)

Download ( Animationen )

Die Animation zeigt den Verlauf eines zentralen vollkommen unelastischen Stoßes mit \(m_1=m_2\) und \(v_2 = -v_1\).

Zum Download
Download ( Animationen )

Die Animation zeigt den Verlauf eines zentralen vollkommen unelastischen Stoßes mit \(m_1=m_2\) und \(v_2 = -v_1\).

Zum Download

Zentraler vollkommen unelastischer Stoß - Sonderfall 3 (Animation)

Download ( Animationen )

Die Animation zeigt den Verlauf eines zentralen vollkommen unelastischen Stoßes mit \({m_1} \ll {m_2}\) und \(v_2 = 0\,\frac{{\rm{m}}}{{\rm{s}}}\).

Zum Download
Download ( Animationen )

Die Animation zeigt den Verlauf eines zentralen vollkommen unelastischen Stoßes mit \({m_1} \ll {m_2}\) und \(v_2 = 0\,\frac{{\rm{m}}}{{\rm{s}}}\).

Zum Download

Rückstoß - Sonderfall 2 (Animation)

Download ( Animationen )

Die Animation zeigt den Verlauf eines Rückstoßes mit \({m_1} \gg {m_2}\) und \(v = 0\,\frac{{\rm{m}}}{{\rm{s}}}\).

Zum Download
Download ( Animationen )

Die Animation zeigt den Verlauf eines Rückstoßes mit \({m_1} \gg {m_2}\) und \(v = 0\,\frac{{\rm{m}}}{{\rm{s}}}\).

Zum Download

Rückstoß - Sonderfall 1 (Animation)

Download ( Animationen )

Die Animation zeigt den Verlauf eines Rückstoßes mit \({m_1} = {m_2}\) und \(v = 0\,\frac{{\rm{m}}}{{\rm{s}}}\).

Zum Download
Download ( Animationen )

Die Animation zeigt den Verlauf eines Rückstoßes mit \({m_1} = {m_2}\) und \(v = 0\,\frac{{\rm{m}}}{{\rm{s}}}\).

Zum Download

Feder-Schwere-Pendel

Grundwissen

  • Ein Feder-Schwere-Pendel mit einem Pendelkörper der Masse \(m\) und einer Feder mit der Federkonstante \(D\) schwingt harmonisch mit der Zeit-Ort-Funktion \(y(t) = \hat{y} \cdot \cos \left( {{\omega} \cdot t} \right)\) mit \({\omega } = \sqrt {\frac{D}{m}}\)
  • Die Schwingungsdauer berechnet sich durch \(T = 2\,\pi \cdot \sqrt {\frac{m}{D}}\); sie ist insbesondere unabhängig von der Amplitude \(\hat{y} \) der Schwingung und dem Ortsfaktor \(g\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ein Feder-Schwere-Pendel mit einem Pendelkörper der Masse \(m\) und einer Feder mit der Federkonstante \(D\) schwingt harmonisch mit der Zeit-Ort-Funktion \(y(t) = \hat{y} \cdot \cos \left( {{\omega} \cdot t} \right)\) mit \({\omega } = \sqrt {\frac{D}{m}}\)
  • Die Schwingungsdauer berechnet sich durch \(T = 2\,\pi \cdot \sqrt {\frac{m}{D}}\); sie ist insbesondere unabhängig von der Amplitude \(\hat{y} \) der Schwingung und dem Ortsfaktor \(g\).

Zum Artikel Zu den Aufgaben

Einseitiger Hebel und Drehmoment

Grundwissen

  • Beim einseitigen Hebel greifen Kräfte nur auf eine Seite der Drehachse an, z.B. am Unterarm oder an einem Schraubenschlüssel.
  • Ein einseitiger Hebel ist im Gleichgewicht, wenn die Summe der Produkte \(F\cdot a\) aller wirkenden Kräfte gleich null ist.
  • Das Produkt aus Kraft \(F\) und Hebelarm \(a\) wird auch als Drehmoment \(M\) bezeichnet: \(M=F\cdot a\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Beim einseitigen Hebel greifen Kräfte nur auf eine Seite der Drehachse an, z.B. am Unterarm oder an einem Schraubenschlüssel.
  • Ein einseitiger Hebel ist im Gleichgewicht, wenn die Summe der Produkte \(F\cdot a\) aller wirkenden Kräfte gleich null ist.
  • Das Produkt aus Kraft \(F\) und Hebelarm \(a\) wird auch als Drehmoment \(M\) bezeichnet: \(M=F\cdot a\).

Zum Artikel Zu den Aufgaben

Wellrad

Grundwissen

  • Ein Wellrad kann physikalisch als Hebel aufgefasst werden.
  • Im Gleichgewichtsfall gilt am Wellrad \(F_1\cdot r_1=F_2\cdot r_2\).
  • Die genaue Richtung der Kraft spielt beim Wellrad nur eine untergeordnete Rolle, der Hebelarm entspricht immer dem Radius des Rades.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ein Wellrad kann physikalisch als Hebel aufgefasst werden.
  • Im Gleichgewichtsfall gilt am Wellrad \(F_1\cdot r_1=F_2\cdot r_2\).
  • Die genaue Richtung der Kraft spielt beim Wellrad nur eine untergeordnete Rolle, der Hebelarm entspricht immer dem Radius des Rades.

Zum Artikel Zu den Aufgaben

Zentraler unelastischer Stoß

Grundwissen

  • Beim unelastischen Stoß bleibt lediglich der Impuls erhalten.
  • Ein Teil der Bewegungsenergie wird beim Stoß in Wärme oder Verformung umgewandelt.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Beim unelastischen Stoß bleibt lediglich der Impuls erhalten.
  • Ein Teil der Bewegungsenergie wird beim Stoß in Wärme oder Verformung umgewandelt.

Zum Artikel Zu den Aufgaben

Rückstoß

Grundwissen

  • Bei einem Rückstoß ist die kinetische Energie nach dem Stoß größer als vor dem Stoß
  • Dies ist möglich, wenn bspw. innere Energie durch eine chemische Reaktion frei wird.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei einem Rückstoß ist die kinetische Energie nach dem Stoß größer als vor dem Stoß
  • Dies ist möglich, wenn bspw. innere Energie durch eine chemische Reaktion frei wird.

Zum Artikel Zu den Aufgaben

Kräfte an der schiefen Ebene (rechnerisch)

Grundwissen

Überlegungen am rechtwinkligen Dreieck ermöglichen eine rechnerische Addition bzw. Zerlegung von Kräften - insbesondere auch an der schiefen Ebene.

Für den Betrag \(F_{\rm{G,\parallel}}\) der parallel zur Ebene wirkende Hangabtriebskraft gilt \(F_{\rm{G,\parallel}}=F_{\rm G}\cdot \frac{h}{l}=F_{\rm G}\cdot \sin(\alpha)\).

Für den Betrag \(F_{\rm{G,\bot}}\) der senkrecht zur Ebene wirkende Normalkomponente der Gewichtskraft gilt \(F_{\rm{G,\bot}}=F_{\rm G}\cdot \frac{b}{l}=F_{\rm G}\cdot \cos(\alpha)\).

Zum Artikel Zu den Aufgaben
Grundwissen

Überlegungen am rechtwinkligen Dreieck ermöglichen eine rechnerische Addition bzw. Zerlegung von Kräften - insbesondere auch an der schiefen Ebene.

Für den Betrag \(F_{\rm{G,\parallel}}\) der parallel zur Ebene wirkende Hangabtriebskraft gilt \(F_{\rm{G,\parallel}}=F_{\rm G}\cdot \frac{h}{l}=F_{\rm G}\cdot \sin(\alpha)\).

Für den Betrag \(F_{\rm{G,\bot}}\) der senkrecht zur Ebene wirkende Normalkomponente der Gewichtskraft gilt \(F_{\rm{G,\bot}}=F_{\rm G}\cdot \frac{b}{l}=F_{\rm G}\cdot \cos(\alpha)\).

Zum Artikel Zu den Aufgaben

Gravitationsfeld (Animation)

Download ( Simulation )

Die Animation zeigt die stärker werdende Homogenität des Gravitationsfeldes bei der Annäherung an die Erdoberfläche.

Zum Download
Download ( Simulation )

Die Animation zeigt die stärker werdende Homogenität des Gravitationsfeldes bei der Annäherung an die Erdoberfläche.

Zum Download

Doppeltes Federpendel (Animation)

Download ( Simulation )

Die Animation zeigt die Bewegung eines doppelten Federpendels und einige Größen, die zur Beschreibung der Bewegung wichtig sind.

Zum Download
Download ( Simulation )

Die Animation zeigt die Bewegung eines doppelten Federpendels und einige Größen, die zur Beschreibung der Bewegung wichtig sind.

Zum Download

Autoscooter (CK-12-Simulation)

Download ( Simulation )

Die Simulation wird zur Verfügung gestellt von https://www.ck12.org. https://www.ck12.org …

Zum Download
Download ( Simulation )

Die Simulation wird zur Verfügung gestellt von https://www.ck12.org. https://www.ck12.org …

Zum Download

Fahrstuhl (CK-12-Simulation)

Download ( Simulation )

Die Simulation wird zur Verfügung gestellt von https://www.ck12.org. https://www.ck12.org …

Zum Download
Download ( Simulation )

Die Simulation wird zur Verfügung gestellt von https://www.ck12.org. https://www.ck12.org …

Zum Download

Trampolin (CK-12-Simulation)

Download ( Simulation )

Die Simulation wird zur Verfügung gestellt von https://www.ck12.org. https://www.ck12.org …

Zum Download
Download ( Simulation )

Die Simulation wird zur Verfügung gestellt von https://www.ck12.org. https://www.ck12.org …

Zum Download

Quantenmechanische Systematisierung des Periodensystems

Grundwissen

  • Die Zustände der gebundenen Elektronen eines Atoms werden mit den Quantenzahlen beschrieben.
  • Es gibt vier unterschiedliche Quantenzahlen: Hauptquantenzahl \(n\), Nebenquantenzahl \(l\), magnetische Quantenzahl \(m\) und Spin-Quantenzahl \(s\).
  • Das PAULI-Prinzip besagt, dass in einem Atom niemals zwei Elektronen in allen vier Quantenzahlen übereinstimmen können.

Zum Artikel
Grundwissen

  • Die Zustände der gebundenen Elektronen eines Atoms werden mit den Quantenzahlen beschrieben.
  • Es gibt vier unterschiedliche Quantenzahlen: Hauptquantenzahl \(n\), Nebenquantenzahl \(l\), magnetische Quantenzahl \(m\) und Spin-Quantenzahl \(s\).
  • Das PAULI-Prinzip besagt, dass in einem Atom niemals zwei Elektronen in allen vier Quantenzahlen übereinstimmen können.

Zum Artikel Zu den Aufgaben

Atomdurchmesser aus dem Ölfleckversuch

Grundwissen

  • Beim Ölfleckversuch wird aus einer makroskopischen Beobachtung auf eine mikroskopische Eigenschaft geschlossen.
  • Der Durchmesser eines Atoms liegt in der Größenordnung von \(10^{-10}\,\rm{m}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Beim Ölfleckversuch wird aus einer makroskopischen Beobachtung auf eine mikroskopische Eigenschaft geschlossen.
  • Der Durchmesser eines Atoms liegt in der Größenordnung von \(10^{-10}\,\rm{m}\).

Zum Artikel Zu den Aufgaben

Gravitationsfeld einer Punktmasse (Simulation)

Download ( Simulation )

Die Simulation zeigt die Darstellung des Gravitationsfeldes einer punktförmigen Masse durch Feldstärkevektoren.

Zum Download
Download ( Simulation )

Die Simulation zeigt die Darstellung des Gravitationsfeldes einer punktförmigen Masse durch Feldstärkevektoren.

Zum Download

Gravitationsfeld an der Erdoberfläche (Simulation)

Download ( Simulation )

Die Simulation zeigt die Darstellung des Gravitationsfeldes an der Erdoberfläche durch Feldstärkevektoren.

Zum Download
Download ( Simulation )

Die Simulation zeigt die Darstellung des Gravitationsfeldes an der Erdoberfläche durch Feldstärkevektoren.

Zum Download

Gravitationskraft zwischen zwei Punktmassen (Simulation)

Download ( Simulation )

Die Simulation zeigt die Gravitationskraft zwischen zwei Punktmassen.

Zum Download
Download ( Simulation )

Die Simulation zeigt die Gravitationskraft zwischen zwei Punktmassen.

Zum Download

Gravitationskraft zwischen der Erdoberfläche und einer Punktmasse (Simulation)

Download ( Simulation )

Die Simulation zeigt die Gravitationskraft zwischen der Erdoberfläche und einer Punktmasse.

Zum Download
Download ( Simulation )

Die Simulation zeigt die Gravitationskraft zwischen der Erdoberfläche und einer Punktmasse.

Zum Download