Direkt zum Inhalt
Suchergebnisse 811 - 840 von 868

Energieformen und Energieumwandlungen (Simulation)

Download ( Simulation )

Die Simulation wird zur Verfügung gestellt von: PhET Interactive Simulations University of Colorado…

Zum Download
Download ( Simulation )

Die Simulation wird zur Verfügung gestellt von: PhET Interactive Simulations University of Colorado…

Zum Download

Schweredruck in Flüssigkeiten (Simulation)

Download ( Simulation )

Diese Simulation demonstriert die Messung des Schweredrucks (auch als hydrostatischer Druck bezeichnet) in einer Flüssigkeit mithilfe einer…

Zum Download
Download ( Simulation )

Diese Simulation demonstriert die Messung des Schweredrucks (auch als hydrostatischer Druck bezeichnet) in einer Flüssigkeit mithilfe einer…

Zum Download

Pfeil und Bogen (CK-12-Simulation)

Download ( Animationen )

Die Simulation wird zur Verfügung gestellt von https://www.ck12.org. https://www.ck12.org …

Zum Download
Download ( Animationen )

Die Simulation wird zur Verfügung gestellt von https://www.ck12.org. https://www.ck12.org …

Zum Download

Kannst du den Scooter deiner Freundin kräftiger anstoßen als sie dich anstößt?

Download ( Animationen )

Die Simulation wird zur Verfügung gestellt von: ©CK-12 Foundation Licensed under • Terms of Use • Attribution  

Zum Download
Download ( Animationen )

Die Simulation wird zur Verfügung gestellt von: ©CK-12 Foundation Licensed under • Terms of Use • Attribution  

Zum Download

Gerader Stoß (Animation)

Download ( Animationen )

Die Animation zeigt den Verlauf eines geraden Stoßes.

Zum Download
Download ( Animationen )

Die Animation zeigt den Verlauf eines geraden Stoßes.

Zum Download

Schiefer Stoß (Animation)

Download ( Animationen )

Die Animation zeigt den Verlauf eines schiefen Stoßes.

Zum Download
Download ( Animationen )

Die Animation zeigt den Verlauf eines schiefen Stoßes.

Zum Download

Zentraler unelastischer Stoß (Animation)

Download ( Animationen )

Die Animation zeigt den Verlauf eines zentralen unelastischen Stoßes.

Zum Download
Download ( Animationen )

Die Animation zeigt den Verlauf eines zentralen unelastischen Stoßes.

Zum Download

Rückstoß (Animation)

Download ( Animationen )

Die Animation zeigt den Verlauf eines Rückstoßes.

Zum Download
Download ( Animationen )

Die Animation zeigt den Verlauf eines Rückstoßes.

Zum Download

Zentraler elastischer Stoß - Sonderfall 1 (Animation)

Download ( Animationen )

Die Animation zeigt den Ablauf eines zentralen elastischen Stoßes mit \(m_1=m_2\) und \(v_2 = 0\,\frac{{\rm{m}}}{{\rm{s}}}\).

Zum Download
Download ( Animationen )

Die Animation zeigt den Ablauf eines zentralen elastischen Stoßes mit \(m_1=m_2\) und \(v_2 = 0\,\frac{{\rm{m}}}{{\rm{s}}}\).

Zum Download

Zentraler elastischer Stoß - Sonderfall 2 (Animation)

Download ( Animationen )

Die Animation zeigt den Ablauf eines zentralen elastischen Stoßes mit \(m_1=m_2\) und \(v_2 = -v_1\).

Zum Download
Download ( Animationen )

Die Animation zeigt den Ablauf eines zentralen elastischen Stoßes mit \(m_1=m_2\) und \(v_2 = -v_1\).

Zum Download

Zentraler elastischer Stoß - Sonderfall 3 (Animation)

Download ( Animationen )

Die Animation zeigt den Ablauf eines zentralen elastischen Stoßes mit \({m_1} \ll {m_2}\) und \(v_2 = 0\,\frac{{\rm{m}}}{{\rm{s}}}\).

Zum Download
Download ( Animationen )

Die Animation zeigt den Ablauf eines zentralen elastischen Stoßes mit \({m_1} \ll {m_2}\) und \(v_2 = 0\,\frac{{\rm{m}}}{{\rm{s}}}\).

Zum Download

Zentraler vollkommen unelastischer Stoß (Animation)

Download ( Animationen )

Die Animation zeigt den Verlauf eines zentralen vollkommen unelastischen Stoßes.

Zum Download
Download ( Animationen )

Die Animation zeigt den Verlauf eines zentralen vollkommen unelastischen Stoßes.

Zum Download

Zentraler vollkommen unelastischer Stoß - Sonderfall 1 (Animation)

Download ( Animationen )

Die Animation zeigt den Verlauf eines zentralen vollkommen unelastischen Stoßes mit \(m_1=m_2\) und \(v_2 = 0\,\frac{{\rm{m}}}{{\rm{s}}}\).

Zum Download
Download ( Animationen )

Die Animation zeigt den Verlauf eines zentralen vollkommen unelastischen Stoßes mit \(m_1=m_2\) und \(v_2 = 0\,\frac{{\rm{m}}}{{\rm{s}}}\).

Zum Download

Zentraler vollkommen unelastischer Stoß - Sonderfall 2 (Animation)

Download ( Animationen )

Die Animation zeigt den Verlauf eines zentralen vollkommen unelastischen Stoßes mit \(m_1=m_2\) und \(v_2 = -v_1\).

Zum Download
Download ( Animationen )

Die Animation zeigt den Verlauf eines zentralen vollkommen unelastischen Stoßes mit \(m_1=m_2\) und \(v_2 = -v_1\).

Zum Download

Zentraler vollkommen unelastischer Stoß - Sonderfall 3 (Animation)

Download ( Animationen )

Die Animation zeigt den Verlauf eines zentralen vollkommen unelastischen Stoßes mit \({m_1} \ll {m_2}\) und \(v_2 = 0\,\frac{{\rm{m}}}{{\rm{s}}}\).

Zum Download
Download ( Animationen )

Die Animation zeigt den Verlauf eines zentralen vollkommen unelastischen Stoßes mit \({m_1} \ll {m_2}\) und \(v_2 = 0\,\frac{{\rm{m}}}{{\rm{s}}}\).

Zum Download

Rückstoß - Sonderfall 2 (Animation)

Download ( Animationen )

Die Animation zeigt den Verlauf eines Rückstoßes mit \({m_1} \gg {m_2}\) und \(v = 0\,\frac{{\rm{m}}}{{\rm{s}}}\).

Zum Download
Download ( Animationen )

Die Animation zeigt den Verlauf eines Rückstoßes mit \({m_1} \gg {m_2}\) und \(v = 0\,\frac{{\rm{m}}}{{\rm{s}}}\).

Zum Download

Rückstoß - Sonderfall 1 (Animation)

Download ( Animationen )

Die Animation zeigt den Verlauf eines Rückstoßes mit \({m_1} = {m_2}\) und \(v = 0\,\frac{{\rm{m}}}{{\rm{s}}}\).

Zum Download
Download ( Animationen )

Die Animation zeigt den Verlauf eines Rückstoßes mit \({m_1} = {m_2}\) und \(v = 0\,\frac{{\rm{m}}}{{\rm{s}}}\).

Zum Download

Feder-Schwere-Pendel

Grundwissen

  • Ein Feder-Schwere-Pendel mit einem Pendelkörper der Masse \(m\) und einer Feder mit der Federkonstante \(D\) schwingt harmonisch mit der Zeit-Ort-Funktion \(y(t) = \hat{y} \cdot \cos \left( {{\omega} \cdot t} \right)\) mit \({\omega } = \sqrt {\frac{D}{m}}\)
  • Die Schwingungsdauer berechnet sich durch \(T = 2\,\pi \cdot \sqrt {\frac{m}{D}}\); sie ist insbesondere unabhängig von der Amplitude \(\hat{y} \) der Schwingung und dem Ortsfaktor \(g\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ein Feder-Schwere-Pendel mit einem Pendelkörper der Masse \(m\) und einer Feder mit der Federkonstante \(D\) schwingt harmonisch mit der Zeit-Ort-Funktion \(y(t) = \hat{y} \cdot \cos \left( {{\omega} \cdot t} \right)\) mit \({\omega } = \sqrt {\frac{D}{m}}\)
  • Die Schwingungsdauer berechnet sich durch \(T = 2\,\pi \cdot \sqrt {\frac{m}{D}}\); sie ist insbesondere unabhängig von der Amplitude \(\hat{y} \) der Schwingung und dem Ortsfaktor \(g\).

Zum Artikel Zu den Aufgaben

Einseitiger Hebel und Drehmoment

Grundwissen

  • Beim einseitigen Hebel greifen Kräfte nur auf eine Seite der Drehachse an, z.B. am Unterarm oder an einem Schraubenschlüssel.
  • Ein einseitiger Hebel ist im Gleichgewicht, wenn die Summe der Produkte \(F\cdot a\) aller wirkenden Kräfte gleich null ist.
  • Das Produkt aus Kraft \(F\) und Hebelarm \(a\) wird auch als Drehmoment \(M\) bezeichnet: \(M=F\cdot a\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Beim einseitigen Hebel greifen Kräfte nur auf eine Seite der Drehachse an, z.B. am Unterarm oder an einem Schraubenschlüssel.
  • Ein einseitiger Hebel ist im Gleichgewicht, wenn die Summe der Produkte \(F\cdot a\) aller wirkenden Kräfte gleich null ist.
  • Das Produkt aus Kraft \(F\) und Hebelarm \(a\) wird auch als Drehmoment \(M\) bezeichnet: \(M=F\cdot a\).

Zum Artikel Zu den Aufgaben

Wellrad

Grundwissen

  • Ein Wellrad kann physikalisch als Hebel aufgefasst werden.
  • Im Gleichgewichtsfall gilt am Wellrad \(F_1\cdot r_1=F_2\cdot r_2\).
  • Die genaue Richtung der Kraft spielt beim Wellrad nur eine untergeordnete Rolle, der Hebelarm entspricht immer dem Radius des Rades.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ein Wellrad kann physikalisch als Hebel aufgefasst werden.
  • Im Gleichgewichtsfall gilt am Wellrad \(F_1\cdot r_1=F_2\cdot r_2\).
  • Die genaue Richtung der Kraft spielt beim Wellrad nur eine untergeordnete Rolle, der Hebelarm entspricht immer dem Radius des Rades.

Zum Artikel Zu den Aufgaben

Zentraler unelastischer Stoß

Grundwissen

  • Beim unelastischen Stoß bleibt lediglich der Impuls erhalten.
  • Ein Teil der Bewegungsenergie wird beim Stoß in Wärme oder Verformung umgewandelt.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Beim unelastischen Stoß bleibt lediglich der Impuls erhalten.
  • Ein Teil der Bewegungsenergie wird beim Stoß in Wärme oder Verformung umgewandelt.

Zum Artikel Zu den Aufgaben

Rückstoß

Grundwissen

  • Bei einem Rückstoß ist die kinetische Energie nach dem Stoß größer als vor dem Stoß
  • Dies ist möglich, wenn bspw. innere Energie durch eine chemische Reaktion frei wird.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei einem Rückstoß ist die kinetische Energie nach dem Stoß größer als vor dem Stoß
  • Dies ist möglich, wenn bspw. innere Energie durch eine chemische Reaktion frei wird.

Zum Artikel Zu den Aufgaben

Kräfte an der schiefen Ebene (rechnerisch)

Grundwissen

Überlegungen am rechtwinkligen Dreieck ermöglichen eine rechnerische Addition bzw. Zerlegung von Kräften - insbesondere auch an der schiefen Ebene.

Für den Betrag \(F_{\rm{G,\parallel}}\) der parallel zur Ebene wirkende Hangabtriebskraft gilt \(F_{\rm{G,\parallel}}=F_{\rm G}\cdot \frac{h}{l}=F_{\rm G}\cdot \sin(\alpha)\).

Für den Betrag \(F_{\rm{G,\bot}}\) der senkrecht zur Ebene wirkende Normalkomponente der Gewichtskraft gilt \(F_{\rm{G,\bot}}=F_{\rm G}\cdot \frac{b}{l}=F_{\rm G}\cdot \cos(\alpha)\).

Zum Artikel Zu den Aufgaben
Grundwissen

Überlegungen am rechtwinkligen Dreieck ermöglichen eine rechnerische Addition bzw. Zerlegung von Kräften - insbesondere auch an der schiefen Ebene.

Für den Betrag \(F_{\rm{G,\parallel}}\) der parallel zur Ebene wirkende Hangabtriebskraft gilt \(F_{\rm{G,\parallel}}=F_{\rm G}\cdot \frac{h}{l}=F_{\rm G}\cdot \sin(\alpha)\).

Für den Betrag \(F_{\rm{G,\bot}}\) der senkrecht zur Ebene wirkende Normalkomponente der Gewichtskraft gilt \(F_{\rm{G,\bot}}=F_{\rm G}\cdot \frac{b}{l}=F_{\rm G}\cdot \cos(\alpha)\).

Zum Artikel Zu den Aufgaben

Gravitationsfeld (Animation)

Download ( Simulation )

Die Animation zeigt die stärker werdende Homogenität des Gravitationsfeldes bei der Annäherung an die Erdoberfläche.

Zum Download
Download ( Simulation )

Die Animation zeigt die stärker werdende Homogenität des Gravitationsfeldes bei der Annäherung an die Erdoberfläche.

Zum Download

Doppeltes Federpendel (Animation)

Download ( Simulation )

Die Animation zeigt die Bewegung eines doppelten Federpendels und einige Größen, die zur Beschreibung der Bewegung wichtig sind.

Zum Download
Download ( Simulation )

Die Animation zeigt die Bewegung eines doppelten Federpendels und einige Größen, die zur Beschreibung der Bewegung wichtig sind.

Zum Download

Autoscooter (CK-12-Simulation)

Download ( Simulation )

Die Simulation wird zur Verfügung gestellt von https://www.ck12.org. https://www.ck12.org …

Zum Download
Download ( Simulation )

Die Simulation wird zur Verfügung gestellt von https://www.ck12.org. https://www.ck12.org …

Zum Download

Fahrstuhl (CK-12-Simulation)

Download ( Simulation )

Die Simulation wird zur Verfügung gestellt von https://www.ck12.org. https://www.ck12.org …

Zum Download
Download ( Simulation )

Die Simulation wird zur Verfügung gestellt von https://www.ck12.org. https://www.ck12.org …

Zum Download

Wesenszug 1: Statistische Vorhersagbarkeit

Grundwissen

  • Die Bahn eines einzelnen Photons beim Doppelspaltexperiment kann grundsätzlich nicht genau vorhergesagt werden.
  • Quantenphysikalische Ereignisse sind nicht deterministisch, unterliegen aber statistischen Gesetzmäßigkeiten.
  • Ein einfaches Beispiel hierzu ist das Verhalten von Photonen an einem Strahlteiler.

Zum Artikel
Grundwissen

  • Die Bahn eines einzelnen Photons beim Doppelspaltexperiment kann grundsätzlich nicht genau vorhergesagt werden.
  • Quantenphysikalische Ereignisse sind nicht deterministisch, unterliegen aber statistischen Gesetzmäßigkeiten.
  • Ein einfaches Beispiel hierzu ist das Verhalten von Photonen an einem Strahlteiler.

Zum Artikel Zu den Aufgaben

Wesenszug 2: Fähigkeit zur Interferenz

Grundwissen

  • Quantenobjekte können mit sich selbst interferieren
  • Für die Ausbildung eines Interferenzmusters in einem Experiment müssen mehrere klassisch denkbare Wege existieren.
  • In der Quantenphysik wird keiner der klassischen Wege tatsächlich realisiert.
  • Quantenobjekten kann meist kein exakter Ort zugeschrieben werden, sondern statistische Aufenthaltswahrscheinlichkeiten.

Zum Artikel
Grundwissen

  • Quantenobjekte können mit sich selbst interferieren
  • Für die Ausbildung eines Interferenzmusters in einem Experiment müssen mehrere klassisch denkbare Wege existieren.
  • In der Quantenphysik wird keiner der klassischen Wege tatsächlich realisiert.
  • Quantenobjekten kann meist kein exakter Ort zugeschrieben werden, sondern statistische Aufenthaltswahrscheinlichkeiten.

Zum Artikel Zu den Aufgaben

Wesenszug 3: Eindeutige Messergebnisse

Grundwissen

  • Quantenmechanische Messungen haben aktiven Charakter: Messungen zwingen ein System einen der möglichen Messwerte anzunehmen.
  • Messergebnisse sind stets eindeutig, auch wenn das Quantenobjekt vor der Messung in einem Zustand war, der unbestimmt bezüglich der gemessenen Größe ist.
  • Man unterscheidet in der Quantenmechanik, ob ein Objekt eine Eigenschaft besitzt oder man diese Eigenschaft misst.

Zum Artikel
Grundwissen

  • Quantenmechanische Messungen haben aktiven Charakter: Messungen zwingen ein System einen der möglichen Messwerte anzunehmen.
  • Messergebnisse sind stets eindeutig, auch wenn das Quantenobjekt vor der Messung in einem Zustand war, der unbestimmt bezüglich der gemessenen Größe ist.
  • Man unterscheidet in der Quantenmechanik, ob ein Objekt eine Eigenschaft besitzt oder man diese Eigenschaft misst.

Zum Artikel Zu den Aufgaben