Direkt zum Inhalt
Suchergebnisse 91 - 120 von 137

Lord KELVIN (Sir William Thomson) (1824 - 1907)

Geschichte
Geschichte

Joseph-Louis GAY-LUSSAC (1778-1850)

Geschichte
Geschichte

Robert BOYLE (1627 - 1691)

Geschichte
Geschichte

James Prescott JOULE (1818 - 1889)

Geschichte
Geschichte

Ludwig BOLTZMANN (1844 - 1906)

Geschichte
Geschichte

Wärmestoff und Allgemeiner Energieerhaltungssatz

Geschichte
Geschichte

Automobilgeschichte

Geschichte
Geschichte

Herons Dampfantrieb

Geschichte
Geschichte

James WATT (1736 - 1819)

Geschichte
Geschichte

Rudolf DIESEL (1858 - 1913)

Geschichte
Geschichte

Dampfmaschine und Industrialisierung

Geschichte
Geschichte

Die sichere Grubenlampe

Geschichte
Geschichte

Wärmelehre

Allgemeines Gasgesetz

  • Warum transportieren Taucher Sauerstoff in Metallflaschen?
  • Was geschieht, wenn man Luft immer weiter abkühlt?
  • Warum benutzt man im Weltall Gasthermometer?

Zum Themenbereich
Themenbereich

Wärmelehre

Ausdehnung bei Erwärmung

  • Wie funktioniert ein Heißluftballon?
  • Wofür sind die Dehnungsfugen in Mauern?
  • Warum darf man keine Wasserflaschen ins Eisfach legen?
  • Wie überleben Fische eigentlich im Winter?

Zum Themenbereich
Themenbereich

Wärmelehre

Innere Energie - Wärmekapazität

  • Was lässt sich leichter erwärmen, Wasser oder Blei?
  • Warum ist es am Meer oft wärmer als im Landesinneren?
  • Kann man Eisen mit einem Hammer zum Glühen bringen?
  • Warum schwitzen wir eigentlich im Sommer?

Zum Themenbereich
Themenbereich

Wärmelehre

Kinetische Gastheorie

  • Was geschieht eigentlich in einem Gas, das man erwärmt?
  • Wie schnell bewegen sich die Teilchen in einem Gas?
  • Wie funktioniert eine Lichtmühle?

Zum Themenbereich
Themenbereich

Wärmelehre

Temperatur und Teilchenmodell

  • Wie entstand eigentlich die CELSIUS-Skala?
  • Woher kennt man den absoluten Nullpunkt?
  • Was geschieht in Körpern, wenn man sie erwärmt?
  • Wie wird Wärme zwischen Körper übertragen?

Zum Themenbereich
Themenbereich

Wärmelehre

Wärmekraftmaschinen

  • Wie funktioniert eigentlich eine Dampfmaschine?
  • Was ist so besonders an einem WANKEL-Motor?
  • OTTO- oder DIESEL-Motor?
  • Was versteht man unter einem Wirkungsgrad?

Zum Themenbereich
Themenbereich

Wärmelehre

Wärmetransport

  • Warum werden Häuser mit Schaumstoffen gedämmt?
  • Wie bleiben Tiere im Winter warm?
  • Wie kommt eigentlich die Wärme der Sonne zur Erde?

Zum Themenbereich
Themenbereich

Wärmelehre

Wetter und Klima

  • Wie entstehen eigentlich Wolken?
  • Was sind Hoch- und Tiefdruckgebiete?
  • Wie kommt es zu einem Gewitter?
  • Was ist der Treibhauseffekt?

Zum Themenbereich
Themenbereich

Wärmelehre

Deterministisches Chaos

  • Was versteht man unter dem Kausalprinzip?
  • Kann ein Schmetterling einen Wirbelsturm verursachen?
  • Deterministisches Chaos – ist das nicht ein Widerspruch?

Zum Themenbereich
Themenbereich

Interferenzfähigkeit von Photonen im Quantenradierer

Grundwissen

Quantenobjekte besitzen sowohl Welleneigenschaften wie Interferenzfähigkeit, als auch Teilcheneigenschaften wie Unteilbarkeit. Dies kann am Mach-Zehnder-Interferometer verdeutlicht werden:

  • Ob im Interferometer Interferenz auftritt, hängt davon ab, ob der Lichtweg eines Photons eindeutig bestimmbar ist.
  • Wenn einem Photon im Interferometer ein eindeutiger Weg zugeordnet werden kann, tritt keine Interferenz auf.
  • Wenn einem Photon im Interferometer mehrere Wege zugeordnet werden können, tritt Interferenz auf.
  • Die Zuordnung von Lichtwegen kann auch hinter dem Interferometer noch rückgängig gemacht werden ("Quantenradierer")

Zum Artikel Zu den Aufgaben
Grundwissen

Quantenobjekte besitzen sowohl Welleneigenschaften wie Interferenzfähigkeit, als auch Teilcheneigenschaften wie Unteilbarkeit. Dies kann am Mach-Zehnder-Interferometer verdeutlicht werden:

  • Ob im Interferometer Interferenz auftritt, hängt davon ab, ob der Lichtweg eines Photons eindeutig bestimmbar ist.
  • Wenn einem Photon im Interferometer ein eindeutiger Weg zugeordnet werden kann, tritt keine Interferenz auf.
  • Wenn einem Photon im Interferometer mehrere Wege zugeordnet werden können, tritt Interferenz auf.
  • Die Zuordnung von Lichtwegen kann auch hinter dem Interferometer noch rückgängig gemacht werden ("Quantenradierer")

Zum Artikel Zu den Aufgaben

Welle - Teilchen - Dualismus

Grundwissen

  • Einige Experimente können besser mit dem Wellenmodell, andere besser mit dem Teilchenmodell des Lichtes erklärt werden.
  • Beide Modelle orientieren sich an unseren makroskopischen Erfahrungen, die zur Beschreibung der Mikroskopischen kaum geeignet sind.
  • Die Quantenphysik bildet ein den beiden Modellen übergeordnetes (stark mathematikorientiertes) Modell.

Zum Artikel
Grundwissen

  • Einige Experimente können besser mit dem Wellenmodell, andere besser mit dem Teilchenmodell des Lichtes erklärt werden.
  • Beide Modelle orientieren sich an unseren makroskopischen Erfahrungen, die zur Beschreibung der Mikroskopischen kaum geeignet sind.
  • Die Quantenphysik bildet ein den beiden Modellen übergeordnetes (stark mathematikorientiertes) Modell.

Zum Artikel Zu den Aufgaben

Statistische Deutung

Grundwissen

  • Quantenobjekte im Sinne der Quantenphysik treten immer als "ganze Portionen" auf.
  • Die Bewegung von Quantenobjekten folgt Wahrscheinlichkeitsgesetzen.
  • Die Quantenmechanik macht statistische Aussagen über die relative Häufigkeit der Ergebnisse bei oftmaliger Wiederholung des gleichen Experiments.

Zum Artikel
Grundwissen

  • Quantenobjekte im Sinne der Quantenphysik treten immer als "ganze Portionen" auf.
  • Die Bewegung von Quantenobjekten folgt Wahrscheinlichkeitsgesetzen.
  • Die Quantenmechanik macht statistische Aussagen über die relative Häufigkeit der Ergebnisse bei oftmaliger Wiederholung des gleichen Experiments.

Zum Artikel Zu den Aufgaben

de-BROGLIE-Wellenlänge

Grundwissen

  • Die de-BROGLIE-Wellenlänge ist eine Übertragung von Eigenschaften von Photonen auf Objekte mit Ruhemasse, z.B. Elektronen
  • Die de-BROGLIE-Wellenlänge für Elektronen berechnest du mittels \(\lambda _{\rm{DB}} = \frac{h}{p_{\rm{e}}}\)
  • Im nicht-relativistischen Fall gilt dann z.B. \({\lambda _{{\rm{DB}}}} = \frac{h}{m_{\rm{e}} \cdot v} = \frac{h}{{\sqrt {2 \cdot {m_{\rm{e}}} \cdot {E_{{\rm{kin}}}}} }} = \frac{h}{{\sqrt {2 \cdot {m_{\rm{e}}} \cdot e \cdot {U_{{\rm{B}}}}} }}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die de-BROGLIE-Wellenlänge ist eine Übertragung von Eigenschaften von Photonen auf Objekte mit Ruhemasse, z.B. Elektronen
  • Die de-BROGLIE-Wellenlänge für Elektronen berechnest du mittels \(\lambda _{\rm{DB}} = \frac{h}{p_{\rm{e}}}\)
  • Im nicht-relativistischen Fall gilt dann z.B. \({\lambda _{{\rm{DB}}}} = \frac{h}{m_{\rm{e}} \cdot v} = \frac{h}{{\sqrt {2 \cdot {m_{\rm{e}}} \cdot {E_{{\rm{kin}}}}} }} = \frac{h}{{\sqrt {2 \cdot {m_{\rm{e}}} \cdot e \cdot {U_{{\rm{B}}}}} }}\)

Zum Artikel Zu den Aufgaben

EINSTEINs Theorie des Lichts

Grundwissen

  • Licht ist ein Strom aus Energiepaketen, sogenannten Photonen.
  • Ein Photon besitzt die Energie \(E_{\rm{Ph}} = h \cdot f\) und den Impuls \(p_{\rm{Ph}} = \frac{h}{\lambda }\).
  • Der äußere Photoeffekt kann mit dem Photonenmodell gut erklärt werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Licht ist ein Strom aus Energiepaketen, sogenannten Photonen.
  • Ein Photon besitzt die Energie \(E_{\rm{Ph}} = h \cdot f\) und den Impuls \(p_{\rm{Ph}} = \frac{h}{\lambda }\).
  • Der äußere Photoeffekt kann mit dem Photonenmodell gut erklärt werden.

Zum Artikel Zu den Aufgaben

Quantenobjekte

Grundwissen

Die Quantenphysik zeichnet sich durch vier zentrale Wesenszüge aus: Statistisches Verhalten, Fähigkeit zur Interferenz, Eindeutige Messergebnisse und Komplementarität

Zum Artikel Zu den Aufgaben
Grundwissen

Die Quantenphysik zeichnet sich durch vier zentrale Wesenszüge aus: Statistisches Verhalten, Fähigkeit zur Interferenz, Eindeutige Messergebnisse und Komplementarität

Zum Artikel Zu den Aufgaben

COMPTON-Effekt

Grundwissen

Joachim Herz Stiftung
  • Der COMPTON-Effekt bezeichnet die Vergrößerung der Wellenlänge \(\lambda\) eines Photons bei der Streuung an einem Teilchen wie bspw. einem Elektron.
  • Die Zunahme der Wellenlänge \(\Delta\lambda\) bei einem Streuwinkel von \(\vartheta\) lässt sich berechnen mittels \[\Delta\lambda =\frac{h}{m_{0}\cdot c} (1-\cos\left(\vartheta\right))= \lambda_{\rm{C}} \cdot (1-\cos\left(\vartheta\right)).\]
  • Die COMPTON-Wellenlänge \(\lambda_{\rm{C}}\) für Elektronen ist \[\lambda_{\rm{C,e}} =\frac{h}{m_{e}\cdot c} = 2{,}43\cdot 10^{-12}\,\rm{m}.\]

Zum Artikel Zu den Aufgaben
Grundwissen

Joachim Herz Stiftung
  • Der COMPTON-Effekt bezeichnet die Vergrößerung der Wellenlänge \(\lambda\) eines Photons bei der Streuung an einem Teilchen wie bspw. einem Elektron.
  • Die Zunahme der Wellenlänge \(\Delta\lambda\) bei einem Streuwinkel von \(\vartheta\) lässt sich berechnen mittels \[\Delta\lambda =\frac{h}{m_{0}\cdot c} (1-\cos\left(\vartheta\right))= \lambda_{\rm{C}} \cdot (1-\cos\left(\vartheta\right)).\]
  • Die COMPTON-Wellenlänge \(\lambda_{\rm{C}}\) für Elektronen ist \[\lambda_{\rm{C,e}} =\frac{h}{m_{e}\cdot c} = 2{,}43\cdot 10^{-12}\,\rm{m}.\]

Zum Artikel Zu den Aufgaben

Die Heisenbergsche Unbestimmtheitsrelation

Grundwissen

  • Man kann den Ort und den Impuls von Quantenobjekten gleichzeitig nicht beliebig genau bestimmen.
  • Das Produkt aus Orts- und Impulsunbestimmtheit kann nicht beliebig klein werden. Es gilt \(\Delta x \cdot \Delta {p_x} \ge \frac{h}{{4\pi }}\)
  • Damit sind auch klassische Bahnvorstellungen von Teilchen nicht mehr möglich.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Man kann den Ort und den Impuls von Quantenobjekten gleichzeitig nicht beliebig genau bestimmen.
  • Das Produkt aus Orts- und Impulsunbestimmtheit kann nicht beliebig klein werden. Es gilt \(\Delta x \cdot \Delta {p_x} \ge \frac{h}{{4\pi }}\)
  • Damit sind auch klassische Bahnvorstellungen von Teilchen nicht mehr möglich.

Zum Artikel Zu den Aufgaben

Erklärungsprobleme des Photoeffekts

Grundwissen

Einige Aspekte des Photoeffektes können mit dem klassischen Wellenmodell nur schwerlich erklärt werden:

  • Die Existenz einer oberen Grenzwellenlänge oberhalb derer auch bei gesteigerter Intensität keine Elektronen mehr ausgelöst werden.
  • Trägheitsloses Einsetzen des Photostroms

Das Photonenmodell liefert für dieses Aspekte plausible Erklärungen.

Zum Artikel
Grundwissen

Einige Aspekte des Photoeffektes können mit dem klassischen Wellenmodell nur schwerlich erklärt werden:

  • Die Existenz einer oberen Grenzwellenlänge oberhalb derer auch bei gesteigerter Intensität keine Elektronen mehr ausgelöst werden.
  • Trägheitsloses Einsetzen des Photostroms

Das Photonenmodell liefert für dieses Aspekte plausible Erklärungen.

Zum Artikel Zu den Aufgaben