Direkt zum Inhalt
Suchergebnisse 31 - 60 von 91

Silizium-Solarzellen

Grundwissen

  • Klassische Silizium-Solarzellen bestehen aus einer n-dotierten und einer p-dotierten Schicht. Am Übergang bildet sich eine sog. Raumladungszone.
  • Einfallendes Licht löst in dieser Raumladungszone Elektronen von Atomen (innerer Fotoeffekt).
  • Der Wirkungsgrad von Solarzellen liegt aktuell bei 13% - 48%.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Klassische Silizium-Solarzellen bestehen aus einer n-dotierten und einer p-dotierten Schicht. Am Übergang bildet sich eine sog. Raumladungszone.
  • Einfallendes Licht löst in dieser Raumladungszone Elektronen von Atomen (innerer Fotoeffekt).
  • Der Wirkungsgrad von Solarzellen liegt aktuell bei 13% - 48%.

Zum Artikel Zu den Aufgaben

Der Transistor als Verstärker

Versuche

Mit diesem Versuch soll demonstriert werden, dass ein Transistor Signale verstärken kann.

Zum Artikel
Versuche

Mit diesem Versuch soll demonstriert werden, dass ein Transistor Signale verstärken kann.

Zum Artikel Zu den Aufgaben

Der Transistor als Schalter

Versuche

Mit diesem Versuch wird nachgewiesen, dass ein Transistor als Schalter dienen kann.

Zum Artikel
Versuche

Mit diesem Versuch wird nachgewiesen, dass ein Transistor als Schalter dienen kann.

Zum Artikel Zu den Aufgaben

Video zum Transistor

Versuche
Versuche

Energiezufuhr bei Halbleitern

Versuche

  • Nachweis, dass durch Energiezufuhr bei Halbleitern Ladungen aus ihren Bindungen gelöst werden können.

Zum Artikel
Versuche

  • Nachweis, dass durch Energiezufuhr bei Halbleitern Ladungen aus ihren Bindungen gelöst werden können.

Zum Artikel Zu den Aufgaben

Einweggleichrichtung

Versuche

Mit diesem Versuch soll gezeigt werden, dass mit einer Diode eine Wechselspannung in eine pulsierende Gleichspannung gewandelt werden kann.

Zum Artikel
Versuche

Mit diesem Versuch soll gezeigt werden, dass mit einer Diode eine Wechselspannung in eine pulsierende Gleichspannung gewandelt werden kann.

Zum Artikel Zu den Aufgaben

Doppelweggleichrichtung

Versuche

Mit diesem Versuch soll gezeigt werden, dass mit einer Kombination von vier Dioden (Brückengleichrichter) eine Wechselspannung in eine pulsierende Gleichspannung gewandelt werden kann.

Zum Artikel
Versuche

Mit diesem Versuch soll gezeigt werden, dass mit einer Kombination von vier Dioden (Brückengleichrichter) eine Wechselspannung in eine pulsierende Gleichspannung gewandelt werden kann.

Zum Artikel Zu den Aufgaben

Diodeneigenschaften des Transistors

Versuche

Mit diesem Versuch wird gezeigt, dass ein Transistor "vordergründig" als Kombination zweier einander entgegengeschalteter Dioden aufgefasst werden.

Zum Artikel
Versuche

Mit diesem Versuch wird gezeigt, dass ein Transistor "vordergründig" als Kombination zweier einander entgegengeschalteter Dioden aufgefasst werden.

Zum Artikel Zu den Aufgaben

Aufnahme der Diodenkennlinie

Versuche

Mit diesem Versuch werden die Kennlinien von Dioden aufgenommen, also der Zusammenhang zwischen der an einer Dioden anliegenden Spannung und der Stärke des daraus resultierenden Stroms durch die Diode untersucht.

Zum Artikel
Versuche

Mit diesem Versuch werden die Kennlinien von Dioden aufgenommen, also der Zusammenhang zwischen der an einer Dioden anliegenden Spannung und der Stärke des daraus resultierenden Stroms durch die Diode untersucht.

Zum Artikel Zu den Aufgaben

Ventilwirkung einer Diode

Versuche

Mit dem Versuch soll die Ventilwirkung eines p-n-Übergangs, also einer Halbleiterdiode gezeigt werden.

Zum Artikel
Versuche

Mit dem Versuch soll die Ventilwirkung eines p-n-Übergangs, also einer Halbleiterdiode gezeigt werden.

Zum Artikel Zu den Aufgaben

Eingangskennlinie des Transistors

Versuche

Mit diesem Versuch soll der Zusammenhang zwischen der Basis-Emitter-Spannung und dem Basisstrom bei einem npn-Transistor untersucht werden. Die graphische Darstellung dieses Zusammenhangs bezeichnet man als Eingangskennlinie.

Zum Artikel
Versuche

Mit diesem Versuch soll der Zusammenhang zwischen der Basis-Emitter-Spannung und dem Basisstrom bei einem npn-Transistor untersucht werden. Die graphische Darstellung dieses Zusammenhangs bezeichnet man als Eingangskennlinie.

Zum Artikel Zu den Aufgaben

Stromsteuerkennlinie des Transistors

Versuche

Mit diesem Versuch soll der Zusammenhang zwischen dem Basisstrom und dem Kollektorstrom bei einem npn-Transistor untersucht werden. Die graphische Darstellung dieses Zusammenhangs bezeichnet man als Stromsteuerkennlinie.

Zum Artikel
Versuche

Mit diesem Versuch soll der Zusammenhang zwischen dem Basisstrom und dem Kollektorstrom bei einem npn-Transistor untersucht werden. Die graphische Darstellung dieses Zusammenhangs bezeichnet man als Stromsteuerkennlinie.

Zum Artikel Zu den Aufgaben

Ausgangskennlinienfeld des Transistors

Versuche

Mit diesem Versuch soll der Zusammenhang zwischen der Kollektor-Emitter-Spannung und dem Kollektorstrom für verschiedene Basisströme bei einem npn-Transistor untersucht werden. Die graphische Darstellung dieses Zusammenhangs bezeichnet man als Ausgangskennlinienfeld.

Zum Artikel
Versuche

Mit diesem Versuch soll der Zusammenhang zwischen der Kollektor-Emitter-Spannung und dem Kollektorstrom für verschiedene Basisströme bei einem npn-Transistor untersucht werden. Die graphische Darstellung dieses Zusammenhangs bezeichnet man als Ausgangskennlinienfeld.

Zum Artikel Zu den Aufgaben

Arbeitsgerade des Transistors

Versuche
Versuche

Kombination der Kennlinienfelder des Transistors

Versuche
Versuche

Kennlinien von Leuchtdioden

Versuche

  • Vergleich der Kennlinien unterschiedlicher LEDs
  • Demonstration des Zusammenhangs zwischen Farbe und Schwellenspannung

Zum Artikel
Versuche

  • Vergleich der Kennlinien unterschiedlicher LEDs
  • Demonstration des Zusammenhangs zwischen Farbe und Schwellenspannung

Zum Artikel Zu den Aufgaben

Kennlinie einer Silizium-Solarzelle

Versuche
Versuche

Interferenzfähigkeit von Photonen im Quantenradierer

Grundwissen

Quantenobjekte besitzen sowohl Welleneigenschaften wie Interferenzfähigkeit, als auch Teilcheneigenschaften wie Unteilbarkeit. Dies kann am Mach-Zehnder-Interferometer verdeutlicht werden:

  • Ob im Interferometer Interferenz auftritt, hängt davon ab, ob der Lichtweg eines Photons eindeutig bestimmbar ist.
  • Wenn einem Photon im Interferometer ein eindeutiger Weg zugeordnet werden kann, tritt keine Interferenz auf.
  • Wenn einem Photon im Interferometer mehrere Wege zugeordnet werden können, tritt Interferenz auf.
  • Die Zuordnung von Lichtwegen kann auch hinter dem Interferometer noch rückgängig gemacht werden ("Quantenradierer")

Zum Artikel Zu den Aufgaben
Grundwissen

Quantenobjekte besitzen sowohl Welleneigenschaften wie Interferenzfähigkeit, als auch Teilcheneigenschaften wie Unteilbarkeit. Dies kann am Mach-Zehnder-Interferometer verdeutlicht werden:

  • Ob im Interferometer Interferenz auftritt, hängt davon ab, ob der Lichtweg eines Photons eindeutig bestimmbar ist.
  • Wenn einem Photon im Interferometer ein eindeutiger Weg zugeordnet werden kann, tritt keine Interferenz auf.
  • Wenn einem Photon im Interferometer mehrere Wege zugeordnet werden können, tritt Interferenz auf.
  • Die Zuordnung von Lichtwegen kann auch hinter dem Interferometer noch rückgängig gemacht werden ("Quantenradierer")

Zum Artikel Zu den Aufgaben

Versuche von HALLWACHS mit dem Strommesser

Versuche

  • Der Versuch zeigt den prinzipiellen Photoeffekt sowie die Abhängigkeit des Elektronenaustritts von Frequenz und Intensität des Lichts anhand der Messung der Stromstärke im Stromkreis

Zum Artikel
Versuche

  • Der Versuch zeigt den prinzipiellen Photoeffekt sowie die Abhängigkeit des Elektronenaustritts von Frequenz und Intensität des Lichts anhand der Messung der Stromstärke im Stromkreis

Zum Artikel Zu den Aufgaben

Elektronenbeugungsröhre (Simulation MintApps)

Versuche
Versuche

Versuche von GRANGIER, ROGER und ASPECT

Versuche

  • Nachweis der Unteilbarkeit von Photonen
  • Nachweis der Interferenz von Einzelphotonen hinter einem Doppelspalt

Zum Artikel
Versuche

  • Nachweis der Unteilbarkeit von Photonen
  • Nachweis der Interferenz von Einzelphotonen hinter einem Doppelspalt

Zum Artikel Zu den Aufgaben

Doppelspaltversuch mit Einzelphotonen (Simulation)

Versuche

  • Demonstration von Beugung und Interferenz von Einzelphotonen hinter einem Doppelspalt

Zum Artikel
Versuche

  • Demonstration von Beugung und Interferenz von Einzelphotonen hinter einem Doppelspalt

Zum Artikel Zu den Aufgaben

Welle - Teilchen - Dualismus

Grundwissen

  • Einige Experimente können besser mit dem Wellenmodell, andere besser mit dem Teilchenmodell des Lichtes erklärt werden.
  • Beide Modelle orientieren sich an unseren makroskopischen Erfahrungen, die zur Beschreibung der Mikroskopischen kaum geeignet sind.
  • Die Quantenphysik bildet ein den beiden Modellen übergeordnetes (stark mathematikorientiertes) Modell.

Zum Artikel
Grundwissen

  • Einige Experimente können besser mit dem Wellenmodell, andere besser mit dem Teilchenmodell des Lichtes erklärt werden.
  • Beide Modelle orientieren sich an unseren makroskopischen Erfahrungen, die zur Beschreibung der Mikroskopischen kaum geeignet sind.
  • Die Quantenphysik bildet ein den beiden Modellen übergeordnetes (stark mathematikorientiertes) Modell.

Zum Artikel Zu den Aufgaben

Statistische Deutung

Grundwissen

  • Quantenobjekte im Sinne der Quantenphysik treten immer als "ganze Portionen" auf.
  • Die Bewegung von Quantenobjekten folgt Wahrscheinlichkeitsgesetzen.
  • Die Quantenmechanik macht statistische Aussagen über die relative Häufigkeit der Ergebnisse bei oftmaliger Wiederholung des gleichen Experiments.

Zum Artikel
Grundwissen

  • Quantenobjekte im Sinne der Quantenphysik treten immer als "ganze Portionen" auf.
  • Die Bewegung von Quantenobjekten folgt Wahrscheinlichkeitsgesetzen.
  • Die Quantenmechanik macht statistische Aussagen über die relative Häufigkeit der Ergebnisse bei oftmaliger Wiederholung des gleichen Experiments.

Zum Artikel Zu den Aufgaben

de-BROGLIE-Wellenlänge

Grundwissen

  • Die de-BROGLIE-Wellenlänge ist eine Übertragung von Eigenschaften von Photonen auf Objekte mit Ruhemasse, z.B. Elektronen
  • Die de-BROGLIE-Wellenlänge für Elektronen berechnest du mittels \(\lambda _{\rm{DB}} = \frac{h}{p_{\rm{e}}}\)
  • Im nicht-relativistischen Fall gilt dann z.B. \({\lambda _{{\rm{DB}}}} = \frac{h}{m_{\rm{e}} \cdot v} = \frac{h}{{\sqrt {2 \cdot {m_{\rm{e}}} \cdot {E_{{\rm{kin}}}}} }} = \frac{h}{{\sqrt {2 \cdot {m_{\rm{e}}} \cdot e \cdot {U_{{\rm{B}}}}} }}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die de-BROGLIE-Wellenlänge ist eine Übertragung von Eigenschaften von Photonen auf Objekte mit Ruhemasse, z.B. Elektronen
  • Die de-BROGLIE-Wellenlänge für Elektronen berechnest du mittels \(\lambda _{\rm{DB}} = \frac{h}{p_{\rm{e}}}\)
  • Im nicht-relativistischen Fall gilt dann z.B. \({\lambda _{{\rm{DB}}}} = \frac{h}{m_{\rm{e}} \cdot v} = \frac{h}{{\sqrt {2 \cdot {m_{\rm{e}}} \cdot {E_{{\rm{kin}}}}} }} = \frac{h}{{\sqrt {2 \cdot {m_{\rm{e}}} \cdot e \cdot {U_{{\rm{B}}}}} }}\)

Zum Artikel Zu den Aufgaben

EINSTEINs Theorie des Lichts

Grundwissen

  • Licht ist ein Strom aus Energiepaketen, sogenannten Photonen.
  • Ein Photon besitzt die Energie \(E_{\rm{Ph}} = h \cdot f\) und den Impuls \(p_{\rm{Ph}} = \frac{h}{\lambda }\).
  • Der äußere Photoeffekt kann mit dem Photonenmodell gut erklärt werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Licht ist ein Strom aus Energiepaketen, sogenannten Photonen.
  • Ein Photon besitzt die Energie \(E_{\rm{Ph}} = h \cdot f\) und den Impuls \(p_{\rm{Ph}} = \frac{h}{\lambda }\).
  • Der äußere Photoeffekt kann mit dem Photonenmodell gut erklärt werden.

Zum Artikel Zu den Aufgaben

Quantenobjekte

Grundwissen

Die Quantenphysik zeichnet sich durch vier zentrale Wesenszüge aus: Statistisches Verhalten, Fähigkeit zur Interferenz, Eindeutige Messergebnisse und Komplementarität

Zum Artikel Zu den Aufgaben
Grundwissen

Die Quantenphysik zeichnet sich durch vier zentrale Wesenszüge aus: Statistisches Verhalten, Fähigkeit zur Interferenz, Eindeutige Messergebnisse und Komplementarität

Zum Artikel Zu den Aufgaben

COMPTON-Effekt

Grundwissen

Joachim Herz Stiftung
  • Der COMPTON-Effekt bezeichnet die Vergrößerung der Wellenlänge \(\lambda\) eines Photons bei der Streuung an einem Teilchen wie bspw. einem Elektron.
  • Die Zunahme der Wellenlänge \(\Delta\lambda\) bei einem Streuwinkel von \(\vartheta\) lässt sich berechnen mittels \[\Delta\lambda =\frac{h}{m_{0}\cdot c} (1-\cos\left(\vartheta\right))= \lambda_{\rm{C}} \cdot (1-\cos\left(\vartheta\right)).\]
  • Die COMPTON-Wellenlänge \(\lambda_{\rm{C}}\) für Elektronen ist \[\lambda_{\rm{C,e}} =\frac{h}{m_{e}\cdot c} = 2{,}43\cdot 10^{-12}\,\rm{m}.\]

Zum Artikel Zu den Aufgaben
Grundwissen

Joachim Herz Stiftung
  • Der COMPTON-Effekt bezeichnet die Vergrößerung der Wellenlänge \(\lambda\) eines Photons bei der Streuung an einem Teilchen wie bspw. einem Elektron.
  • Die Zunahme der Wellenlänge \(\Delta\lambda\) bei einem Streuwinkel von \(\vartheta\) lässt sich berechnen mittels \[\Delta\lambda =\frac{h}{m_{0}\cdot c} (1-\cos\left(\vartheta\right))= \lambda_{\rm{C}} \cdot (1-\cos\left(\vartheta\right)).\]
  • Die COMPTON-Wellenlänge \(\lambda_{\rm{C}}\) für Elektronen ist \[\lambda_{\rm{C,e}} =\frac{h}{m_{e}\cdot c} = 2{,}43\cdot 10^{-12}\,\rm{m}.\]

Zum Artikel Zu den Aufgaben

Die Heisenbergsche Unbestimmtheitsrelation

Grundwissen

  • Man kann den Ort und den Impuls von Quantenobjekten gleichzeitig nicht beliebig genau bestimmen.
  • Das Produkt aus Orts- und Impulsunbestimmtheit kann nicht beliebig klein werden. Es gilt \(\Delta x \cdot \Delta {p_x} \ge \frac{h}{{4\pi }}\)
  • Damit sind auch klassische Bahnvorstellungen von Teilchen nicht mehr möglich.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Man kann den Ort und den Impuls von Quantenobjekten gleichzeitig nicht beliebig genau bestimmen.
  • Das Produkt aus Orts- und Impulsunbestimmtheit kann nicht beliebig klein werden. Es gilt \(\Delta x \cdot \Delta {p_x} \ge \frac{h}{{4\pi }}\)
  • Damit sind auch klassische Bahnvorstellungen von Teilchen nicht mehr möglich.

Zum Artikel Zu den Aufgaben

Erklärungsprobleme des Photoeffekts

Grundwissen

Einige Aspekte des Photoeffektes können mit dem klassischen Wellenmodell nur schwerlich erklärt werden:

  • Die Existenz einer oberen Grenzwellenlänge oberhalb derer auch bei gesteigerter Intensität keine Elektronen mehr ausgelöst werden.
  • Trägheitsloses Einsetzen des Photostroms

Das Photonenmodell liefert für dieses Aspekte plausible Erklärungen.

Zum Artikel
Grundwissen

Einige Aspekte des Photoeffektes können mit dem klassischen Wellenmodell nur schwerlich erklärt werden:

  • Die Existenz einer oberen Grenzwellenlänge oberhalb derer auch bei gesteigerter Intensität keine Elektronen mehr ausgelöst werden.
  • Trägheitsloses Einsetzen des Photostroms

Das Photonenmodell liefert für dieses Aspekte plausible Erklärungen.

Zum Artikel Zu den Aufgaben