Direkt zum Inhalt
Suchergebnisse 1 - 30 von 1849

TORRICELLI-Gleichung

Grundwissen

  • Die Austrittsgeschwindigkeit eines Wasserstrahls aus der Öffnung hängt nur vom Füllstand, nicht von seiner Form oder der Größe der Austrittsöffnung ab.
  • .Für die Austrittsgeschwindigkeit gilt \(v = \sqrt{2 \cdot g \cdot h}\).
  • Der Auftreffpunkt auf dem Boden kann idealisiert als waagerechter Wurf  berechnet werden.

Zum Artikel
Grundwissen

  • Die Austrittsgeschwindigkeit eines Wasserstrahls aus der Öffnung hängt nur vom Füllstand, nicht von seiner Form oder der Größe der Austrittsöffnung ab.
  • .Für die Austrittsgeschwindigkeit gilt \(v = \sqrt{2 \cdot g \cdot h}\).
  • Der Auftreffpunkt auf dem Boden kann idealisiert als waagerechter Wurf  berechnet werden.

Zum Artikel Zu den Aufgaben

TORRICELLI-Gleichung

Versuche
Versuche

Dynamischer Auftrieb und \(c_{\rm{A}}\)-Wert

Grundwissen

  • Ein nicht symmetrische bzw. nicht symmetrisch zu seiner Form angeströmter Körper erfährt einen dynamischen Auftrieb \(\vec{F}_{\rm{A}}\)
  • Der dynamische Auftrieb entsteht im Zusammenspiel von verschiedenen anderen Effekten
  •  Es gilt \(F_{\rm{A}} = \frac{1}{2} \cdot c_{\rm{A}} \cdot \rho \cdot A \cdot v^2\), wobei \(A\) die Referenzfläche des Körpers und \(c_{\rm{A}}\) der Auftriebsbeiwert ist.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ein nicht symmetrische bzw. nicht symmetrisch zu seiner Form angeströmter Körper erfährt einen dynamischen Auftrieb \(\vec{F}_{\rm{A}}\)
  • Der dynamische Auftrieb entsteht im Zusammenspiel von verschiedenen anderen Effekten
  •  Es gilt \(F_{\rm{A}} = \frac{1}{2} \cdot c_{\rm{A}} \cdot \rho \cdot A \cdot v^2\), wobei \(A\) die Referenzfläche des Körpers und \(c_{\rm{A}}\) der Auftriebsbeiwert ist.

Zum Artikel Zu den Aufgaben

Strömungswiderstand und \(c_{\rm{w}}\)-Wert

Grundwissen

  • Bewegt sich ein Körper relativ zu einem Fluid so erfährt der Körper eine entgegen der relativen Bewegungsrichtung gerichtete Kraft, den Strömungswiderstand \(\vec F_{\rm{w}}\).
  • Für den Strömungswiderstand gilt \(F_{\rm{w}} = \frac{1}{2} \cdot c_{\rm{w}} \cdot \rho \cdot A \cdot v^2\)
  • Die Größe \(c_{\rm{w}}\) ist der sog. Widerstandsbeiwert, kurz \(c_{\rm{w}}\)-Wert.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bewegt sich ein Körper relativ zu einem Fluid so erfährt der Körper eine entgegen der relativen Bewegungsrichtung gerichtete Kraft, den Strömungswiderstand \(\vec F_{\rm{w}}\).
  • Für den Strömungswiderstand gilt \(F_{\rm{w}} = \frac{1}{2} \cdot c_{\rm{w}} \cdot \rho \cdot A \cdot v^2\)
  • Die Größe \(c_{\rm{w}}\) ist der sog. Widerstandsbeiwert, kurz \(c_{\rm{w}}\)-Wert.

Zum Artikel Zu den Aufgaben

Physik des Fliegens

Grundwissen

  • Beim Fliegen spielt das Zusammenwirken von Auftriebskraft und Luftwiderstand die „tragende“ Rolle.
  • Man unterscheidet Steigflug, Geradeausflug und Sinkflug.
  • Abgesehen von kurzen Beschleunigungsphasen sind stets alle wirkenden Kräfte im Gleichgewicht.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Beim Fliegen spielt das Zusammenwirken von Auftriebskraft und Luftwiderstand die „tragende“ Rolle.
  • Man unterscheidet Steigflug, Geradeausflug und Sinkflug.
  • Abgesehen von kurzen Beschleunigungsphasen sind stets alle wirkenden Kräfte im Gleichgewicht.

Zum Artikel Zu den Aufgaben

Der Mensch als Leiter von Musik

Versuche

  • Demonstration der Leitfähigkeit des menschlichen Körpers
  • Thematisierung der Gefahr von Strom für den Menschen

Zum Artikel
Versuche

  • Demonstration der Leitfähigkeit des menschlichen Körpers
  • Thematisierung der Gefahr von Strom für den Menschen

Zum Artikel Zu den Aufgaben

Hall-Effekt (Grundversuch)

Versuche

  • Qualitativer Nachweis des Auftretens des Hall-Effektes
  • Nachweis von \(U_{\rm{H}} \sim I_{\rm{quer}}\)

Zum Artikel
Versuche

  • Qualitativer Nachweis des Auftretens des Hall-Effektes
  • Nachweis von \(U_{\rm{H}} \sim I_{\rm{quer}}\)

Zum Artikel Zu den Aufgaben

Gefahr durch Strom und Körperwiderstand

Grundwissen

  • Strom kann für den Menschen schon ab ca. \(30\,\rm{mA}\) tödlich sein.
  • Wechselstrom ist gefährlicher als Gleichstrom.
  • Der Körperwiderstand liegt mit Übergangswiderständen der Haut im Bereich von \(1\)-\(5\,\rm{k}\Omega\), je nach Weg durch den Körper.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Strom kann für den Menschen schon ab ca. \(30\,\rm{mA}\) tödlich sein.
  • Wechselstrom ist gefährlicher als Gleichstrom.
  • Der Körperwiderstand liegt mit Übergangswiderständen der Haut im Bereich von \(1\)-\(5\,\rm{k}\Omega\), je nach Weg durch den Körper.

Zum Artikel Zu den Aufgaben

Zerfallsgesetz, Zerfallskonstante und Halbwertszeit

Grundwissen

  • Für den Bestand \(N\) der zum Zeitpunkt \(t\) noch nicht zerfallenden Atomkerne gilt \(N(t) = {N_0} \cdot {e^{ - \lambda  \cdot t}}\) mit der Zerfallskonstanten \(\lambda\).
  • Für die Aktivität \(A\) zum Zeitpunkt \(t\) gilt \(A(t) = {A_0} \cdot {e^{ - \lambda  \cdot t}} = \lambda  \cdot {N_0} \cdot {e^{ - \lambda  \cdot t}}\).
  • Die Halbwertszeit \(T_{1/2}\) ist die Zeitspanne, in der sich die Anzahl der nicht zerfallenen Atomkerne eines radioaktiven Präparats halbiert.
  • Zwischen der Zerfallskonstanten \(\lambda\) und der Halbwertszeit \({T_{1/2}}\) besteht der Zusammenhang \(\lambda  = \frac{{\ln \left( 2 \right)}}{{{T_{1/2}}}}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Für den Bestand \(N\) der zum Zeitpunkt \(t\) noch nicht zerfallenden Atomkerne gilt \(N(t) = {N_0} \cdot {e^{ - \lambda  \cdot t}}\) mit der Zerfallskonstanten \(\lambda\).
  • Für die Aktivität \(A\) zum Zeitpunkt \(t\) gilt \(A(t) = {A_0} \cdot {e^{ - \lambda  \cdot t}} = \lambda  \cdot {N_0} \cdot {e^{ - \lambda  \cdot t}}\).
  • Die Halbwertszeit \(T_{1/2}\) ist die Zeitspanne, in der sich die Anzahl der nicht zerfallenen Atomkerne eines radioaktiven Präparats halbiert.
  • Zwischen der Zerfallskonstanten \(\lambda\) und der Halbwertszeit \({T_{1/2}}\) besteht der Zusammenhang \(\lambda  = \frac{{\ln \left( 2 \right)}}{{{T_{1/2}}}}\).

Zum Artikel Zu den Aufgaben

Auswerten von Zerfallskurven

Grundwissen

  • Aus Messwerten vom Zerfall eines radioaktiven Präparates kannst du mit verschiedenen Methoden z.B. die Anfangsaktivität \(A_0\), die Zerfallskonstante \(\lambda\) und die Halbwertszeit \(T_{1/2}\) bestimmen.
  • Welche Methode du wählst hängt von der Aufgabenstellung und den vorhandenen technischen Hilfsmitteln wie GTR oder Tabellenkalkulation ab.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Aus Messwerten vom Zerfall eines radioaktiven Präparates kannst du mit verschiedenen Methoden z.B. die Anfangsaktivität \(A_0\), die Zerfallskonstante \(\lambda\) und die Halbwertszeit \(T_{1/2}\) bestimmen.
  • Welche Methode du wählst hängt von der Aufgabenstellung und den vorhandenen technischen Hilfsmitteln wie GTR oder Tabellenkalkulation ab.

Zum Artikel Zu den Aufgaben

Auswerten von Absorptionskurven

Grundwissen

  • Aus Messwerten z.B. der Zählrate \(R\) ionisierender Strahlung hinter Absorbern kannst du mit verschiedenen Methoden z.B. die Zählrate \(R_0\) ohne Absorber, den Absorptionskoeffizienten \(\mu\) und die Halbwertsschichtdicke \(d_{1/2}\) bestimmen.
  • Welche Methode du wählst hängt von der Aufgabenstellung und den vorhandenen technischen Hilfsmitteln wie GTR oder Tabellenkalkulation ab.

Zum Artikel
Grundwissen

  • Aus Messwerten z.B. der Zählrate \(R\) ionisierender Strahlung hinter Absorbern kannst du mit verschiedenen Methoden z.B. die Zählrate \(R_0\) ohne Absorber, den Absorptionskoeffizienten \(\mu\) und die Halbwertsschichtdicke \(d_{1/2}\) bestimmen.
  • Welche Methode du wählst hängt von der Aufgabenstellung und den vorhandenen technischen Hilfsmitteln wie GTR oder Tabellenkalkulation ab.

Zum Artikel Zu den Aufgaben

Stromleitung in Flüssigkeiten

Versuche

  • Untersuchung der Leitung von Strom in verschiedenen Flüssigkeiten
  • Untersuchung des Einflusses des Salzgehaltes von Wasser auf die Stromleitung

Zum Artikel
Versuche

  • Untersuchung der Leitung von Strom in verschiedenen Flüssigkeiten
  • Untersuchung des Einflusses des Salzgehaltes von Wasser auf die Stromleitung

Zum Artikel Zu den Aufgaben

Zyklotron (Simulation MintApps)

Download ( Simulation )

Wir danken Herrn Thomas Kippenberg für die Erlaubnis, diese Simulation auf LEIFIphysik zu nutzen. Der Code steht unter GNU GPLv3 /…

Zum Download
Download ( Simulation )

Wir danken Herrn Thomas Kippenberg für die Erlaubnis, diese Simulation auf LEIFIphysik zu nutzen. Der Code steht unter GNU GPLv3 /…

Zum Download

Stromleitung in Gasen

Versuche

  • Untersuchung der Stromleitung in Gasen

Zum Artikel
Versuche

  • Untersuchung der Stromleitung in Gasen

Zum Artikel Zu den Aufgaben

Größen zur Beschreibung einer Kreisbewegung (Animation)

Download ( Simulation )

Die Animation zeigt die relevanten Größen zur Beschreibung einer Kreisbewegung.

Zum Download
Download ( Simulation )

Die Animation zeigt die relevanten Größen zur Beschreibung einer Kreisbewegung.

Zum Download

Bahngeschwindigkeit und Winkelgeschwindigkeit - gleiche Bahngeschwindigkeit (Animation)

Download ( Simulation )

Die Animation zeigt zwei Körper mit unterschiedlichen Bahnradien und gleicher Bahngeschwindigkeit.

Zum Download
Download ( Simulation )

Die Animation zeigt zwei Körper mit unterschiedlichen Bahnradien und gleicher Bahngeschwindigkeit.

Zum Download

Bahngeschwindigkeit und Winkelgeschwindigkeit - gleiche Winkelgeschwindigkeit (Animation)

Download ( Simulation )

Die Animation zeigt zwei Körper mit unterschiedlichen Bahnradien und gleicher Winkelgeschwindigkeit.

Zum Download
Download ( Simulation )

Die Animation zeigt zwei Körper mit unterschiedlichen Bahnradien und gleicher Winkelgeschwindigkeit.

Zum Download

Bahngeschwindigkeit und Winkelgeschwindigkeit - Vergleich (Animation)

Download ( Simulation )

Die Animation zeigt den Unterschied zwischen Bahngeschwindigkeit und Winkelgeschwindigkeit. Während die Winkelgeschwindigkeit \(\omega\) nur von der…

Zum Download
Download ( Simulation )

Die Animation zeigt den Unterschied zwischen Bahngeschwindigkeit und Winkelgeschwindigkeit. Während die Winkelgeschwindigkeit \(\omega\) nur von der…

Zum Download

Charakterisierung der gleichförmigen Kreisbewegung - gleichfömige Kreisbewegung (Animation)

Download ( Simulation )

Die Animation zeigt eine gleichförmige Kreisbewegung.

Zum Download
Download ( Simulation )

Die Animation zeigt eine gleichförmige Kreisbewegung.

Zum Download

Charakterisierung der gleichförmigen Kreisbewegung - Ellipsenbewegung (Animation)

Download ( Simulation )

Die Animation zeigt eine Ellipsenbewegung.

Zum Download
Download ( Simulation )

Die Animation zeigt eine Ellipsenbewegung.

Zum Download

Charakterisierung der gleichförmigen Kreisbewegung - ungleichförmige Kreisbewegung (Animation)

Download ( Simulation )

Die Animation zeigt eine ungleichförmige Kreisbewegung.

Zum Download
Download ( Simulation )

Die Animation zeigt eine ungleichförmige Kreisbewegung.

Zum Download

Kraft auf stromdurchflossene Alufolie

Versuche

  • Veranschaulichung der magnetischen Kraftwirkung auf einen stromdurchflossenen Leiter
  • Untersuchung der Richtung der magnetischen Kraftwirkung
  • Herleitung oder Bestätigung der Drei-Finger-Regel

Zum Artikel
Versuche

  • Veranschaulichung der magnetischen Kraftwirkung auf einen stromdurchflossenen Leiter
  • Untersuchung der Richtung der magnetischen Kraftwirkung
  • Herleitung oder Bestätigung der Drei-Finger-Regel

Zum Artikel Zu den Aufgaben

Zentripetalkraft - Einführung (Animation)

Download ( Simulation )

Die Animation verdeutlicht die Notwendigkeit einer zum Drehzentrum gerichteten Kraft für eine Kreisbewegung.

Zum Download
Download ( Simulation )

Die Animation verdeutlicht die Notwendigkeit einer zum Drehzentrum gerichteten Kraft für eine Kreisbewegung.

Zum Download

Energie und ihre Eigenschaften

Grundwissen

  • Energietransport: Energie kann von einem Ort zu einem anderen transportiert werden.
  • Energieübertragung: Energie kann von einem Körper oder einem System auf einen anderen Körper oder ein anderes System übertragen werden.
  • Energieumwandlung: Energie kann von einer Form in eine andere Form umgewandelt werden.
  • Energieerhaltung: Bei der Energieübertragung oder der Energieumwandlung geht keine Energie verloren und kommt keine Energie hinzu.
  • Energieentwertung: Bei jeder Energieübertragung oder Energieumwandlung wird ein Teil der zu Beginn vorhandenen Energie entwertet.

Zum Artikel
Grundwissen

  • Energietransport: Energie kann von einem Ort zu einem anderen transportiert werden.
  • Energieübertragung: Energie kann von einem Körper oder einem System auf einen anderen Körper oder ein anderes System übertragen werden.
  • Energieumwandlung: Energie kann von einer Form in eine andere Form umgewandelt werden.
  • Energieerhaltung: Bei der Energieübertragung oder der Energieumwandlung geht keine Energie verloren und kommt keine Energie hinzu.
  • Energieentwertung: Bei jeder Energieübertragung oder Energieumwandlung wird ein Teil der zu Beginn vorhandenen Energie entwertet.

Zum Artikel Zu den Aufgaben

Energie und ihre Eigenschaften - Energieübertragung (Animation)

Download ( Simulation )

Die Animation zeigt die Übertragung von Energie von einem Körper auf einen anderen Körper.

Zum Download
Download ( Simulation )

Die Animation zeigt die Übertragung von Energie von einem Körper auf einen anderen Körper.

Zum Download

Energie und ihre Eigenschaften - Energieumwandlung (Animation)

Download ( Simulation )

Die Animation zeigt die Umwandlung von Energie innerhalb eines Systems.

Zum Download
Download ( Simulation )

Die Animation zeigt die Umwandlung von Energie innerhalb eines Systems.

Zum Download

Energie und ihre Eigenschaften - Energieerhaltung (Animation)

Download ( Simulation )

Die Animation zeigt die Erhaltung von Energie in einem abgeschlossenen System.

Zum Download
Download ( Simulation )

Die Animation zeigt die Erhaltung von Energie in einem abgeschlossenen System.

Zum Download

Energie und ihre Eigenschaften - Energieentwertung (Animation)

Download ( Simulation )

Die Animation zeigt die Entwertung von Energie.

Zum Download
Download ( Simulation )

Die Animation zeigt die Entwertung von Energie.

Zum Download

Synchro-Zyklotron (Simulation MintApps)

Download ( Simulation )

Wir danken Herrn Thomas Kippenberg für die Erlaubnis, diese Simulation auf LEIFIphysik zu nutzen. Der Code steht unter GNU GPLv3 /…

Zum Download
Download ( Simulation )

Wir danken Herrn Thomas Kippenberg für die Erlaubnis, diese Simulation auf LEIFIphysik zu nutzen. Der Code steht unter GNU GPLv3 /…

Zum Download

Stoß-Labor (Simulation)

Download ( Simulation )

Diese Simulation wird zur Verfügung gestellt von: PhET Interactive Simulations University of Colorado…

Zum Download
Download ( Simulation )

Diese Simulation wird zur Verfügung gestellt von: PhET Interactive Simulations University of Colorado…

Zum Download