Direkt zum Inhalt
Suchergebnisse 151 - 180 von 193

Kraft zwischen Strömen

Grundwissen

  • Elektrische Ströme üben aufeinander Kräfte aus; diese Kräfte bezeichnen wir als magnetische Kräfte.
  • Alle magnetischen Erscheinungen beruhen auf diesen magnetischen Kräften: Der Permanentmagnetismus beruht auf stromartigen Effekten in den Atomen, der Erdmagnetismus beruht auf dem Strom von elektrisch leitender Flüssigkeit im äußeren Erdkern.

Zum Artikel
Grundwissen

  • Elektrische Ströme üben aufeinander Kräfte aus; diese Kräfte bezeichnen wir als magnetische Kräfte.
  • Alle magnetischen Erscheinungen beruhen auf diesen magnetischen Kräften: Der Permanentmagnetismus beruht auf stromartigen Effekten in den Atomen, der Erdmagnetismus beruht auf dem Strom von elektrisch leitender Flüssigkeit im äußeren Erdkern.

Zum Artikel Zu den Aufgaben

Bestimmung der magnetischen Kraft

Grundwissen

  • Herrscht an einem Punkt ein magnetisches Feld mit bekannter Richtung, Orientierung und bekanntem Betrag \(B\) der magnetischen Flussdichte und befindet sich an diesem Punkt ein Leiterstück der Länge \(l\), durch das ein Strom der Stärke \(I\) fließt, dann kannst du die Richtung, die Orientierung und den Betrag der magnetischen Kraft \(\vec F_{\rm{mag}}\) auf dieses Leiterstück bestimmen.
  • Die Richtung und die Orientierung der magnetischen Kraft \(\vec F_{\rm{mag}}\) auf das Leiterstück bestimmst du mit Hilfe der Drei-Finger-Regel der rechten Hand (Daumen in elektrische Stromrichtung, Zeigefinger in Magnetfeldrichtung → Mittelfinger in Kraftrichtung).
  • Den Betrag \(F_{\rm{mag}}\) der magnetischen Kraft auf das Leiterstück berechnest du mit der Formel \({F_{{\rm{mag}}}} = I \cdot l \cdot  B \cdot \sin \left( \varphi \right)\), wobei \(\varphi\) die Weite des Winkels zwischen \(\vec B\) und \(\vec I\) ist.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Herrscht an einem Punkt ein magnetisches Feld mit bekannter Richtung, Orientierung und bekanntem Betrag \(B\) der magnetischen Flussdichte und befindet sich an diesem Punkt ein Leiterstück der Länge \(l\), durch das ein Strom der Stärke \(I\) fließt, dann kannst du die Richtung, die Orientierung und den Betrag der magnetischen Kraft \(\vec F_{\rm{mag}}\) auf dieses Leiterstück bestimmen.
  • Die Richtung und die Orientierung der magnetischen Kraft \(\vec F_{\rm{mag}}\) auf das Leiterstück bestimmst du mit Hilfe der Drei-Finger-Regel der rechten Hand (Daumen in elektrische Stromrichtung, Zeigefinger in Magnetfeldrichtung → Mittelfinger in Kraftrichtung).
  • Den Betrag \(F_{\rm{mag}}\) der magnetischen Kraft auf das Leiterstück berechnest du mit der Formel \({F_{{\rm{mag}}}} = I \cdot l \cdot  B \cdot \sin \left( \varphi \right)\), wobei \(\varphi\) die Weite des Winkels zwischen \(\vec B\) und \(\vec I\) ist.

Zum Artikel Zu den Aufgaben

Bestimmung der LORENTZ-Kraft

Grundwissen

  • Herrscht an einem Punkt ein magnetisches Feld \(\vec B\) mit bekannter Richtung, Orientierung und Flussdichte \(B\), und bewegt sich an diesem Punkt ein Teilchen mit der Ladung \(q\) und der Geschwindigkeit \(\vec v\), dann kannst du die Richtung, die Orientierung und den Betrag der LORENTZ-Kraft \(\vec F_{\rm{L}}\) auf dieses Teilchen bestimmen.
  • Die Richtung und die Orientierung der LORENTZ-Kraft \(\vec F_{\rm{L}}\) auf das Teilchen bestimmst du mit Hilfe der Drei-Finger-Regel der rechten Hand (Daumen in Bewegungsrichtung eines positiv geladenen Teilchens, Zeigefinger in Magnetfeldrichtung → Mittelfinger in Kraftrichtung).
  • Den Betrag \(F_{\rm{L}}\) der LORENTZ-Kraft auf das Teilchen berechnest du mit der Formel \({F_{{\rm{L}}}} = q \cdot v \cdot  B \cdot \sin \left( \varphi \right)\), wobei \(\varphi\) die Weite des Winkels zwischen \(\vec B\) und \(\vec v\) ist.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Herrscht an einem Punkt ein magnetisches Feld \(\vec B\) mit bekannter Richtung, Orientierung und Flussdichte \(B\), und bewegt sich an diesem Punkt ein Teilchen mit der Ladung \(q\) und der Geschwindigkeit \(\vec v\), dann kannst du die Richtung, die Orientierung und den Betrag der LORENTZ-Kraft \(\vec F_{\rm{L}}\) auf dieses Teilchen bestimmen.
  • Die Richtung und die Orientierung der LORENTZ-Kraft \(\vec F_{\rm{L}}\) auf das Teilchen bestimmst du mit Hilfe der Drei-Finger-Regel der rechten Hand (Daumen in Bewegungsrichtung eines positiv geladenen Teilchens, Zeigefinger in Magnetfeldrichtung → Mittelfinger in Kraftrichtung).
  • Den Betrag \(F_{\rm{L}}\) der LORENTZ-Kraft auf das Teilchen berechnest du mit der Formel \({F_{{\rm{L}}}} = q \cdot v \cdot  B \cdot \sin \left( \varphi \right)\), wobei \(\varphi\) die Weite des Winkels zwischen \(\vec B\) und \(\vec v\) ist.

Zum Artikel Zu den Aufgaben

Induktion durch Änderung der magnetischen Flussdichte

Grundwissen

In einer Induktionsanordnung gelten folgende Bedingungen:

  • die Richtung des magnetischen Feldvektors \(\vec B\) des homogenen magnetischen Feldes ist konstant
  • der Flächenvektor \(\vec A\) der (Teil-)Fläche der Leiterschleife oder der Spule mit Windungszahl \(N\), die sich im magnetischen Feld befindet, ist konstant
  • die Weite \(\varphi\) des Winkels zwischen dem Feldvektor \(\vec B\) und dem Flächenvektor \(\vec A\) ist damit ebenfalls konstant.

Wenn sich die magnetische Flussdichte \(B\) mit der Änderungsrate \(\frac{dB}{dt}\) ändert, dann berechnet sich die Induktionsspannung \(U_{\rm{i}}\) durch \(U_{\rm{i}}\left(t\right) =  - N \cdot \frac{dB}{dt} \cdot A \cdot \cos\left(\varphi\right)\).

Zum Artikel Zu den Aufgaben
Grundwissen

In einer Induktionsanordnung gelten folgende Bedingungen:

  • die Richtung des magnetischen Feldvektors \(\vec B\) des homogenen magnetischen Feldes ist konstant
  • der Flächenvektor \(\vec A\) der (Teil-)Fläche der Leiterschleife oder der Spule mit Windungszahl \(N\), die sich im magnetischen Feld befindet, ist konstant
  • die Weite \(\varphi\) des Winkels zwischen dem Feldvektor \(\vec B\) und dem Flächenvektor \(\vec A\) ist damit ebenfalls konstant.

Wenn sich die magnetische Flussdichte \(B\) mit der Änderungsrate \(\frac{dB}{dt}\) ändert, dann berechnet sich die Induktionsspannung \(U_{\rm{i}}\) durch \(U_{\rm{i}}\left(t\right) =  - N \cdot \frac{dB}{dt} \cdot A \cdot \cos\left(\varphi\right)\).

Zum Artikel Zu den Aufgaben

Induktion durch Änderung des Flächeninhalts

Grundwissen

In einer Induktionsanordnung gelten folgende Bedingungen:

  • der Feldvektor \(\vec B\) (und damit die Richtung, die Orientierung und die Flussdichte) des homogenen magnetischen Feldes ist konstant
  • die Richtung und die Orientierung des Flächenvektors \(\vec A\) des Teils der Leiterschleife, der vom magnetische Feld durchsetzt wird, sind konstant
  • die Weite \(\varphi\) des Winkels zwischen Flächenvektor \(\vec A\) und Feldvektor \(\vec B\) ist konstant

Wenn sich der Betrag \(A\), d.h. der Inhalt der Fläche des Teils der Leiterschleife oder Spule mit Windungszahl \(N\), die vom magnetischen Feld durchsetzt wird, mit der Änderungsrate \(\frac{dA}{dt}\) ändert, dann berechnet sich die Induktionsspannung \(U_{\rm{i}}\) durch \(U_{\rm{i}} =  - N \cdot B \cdot \frac{dA}{dt} \cdot \cos\left(\varphi\right)\).

Zum Artikel Zu den Aufgaben
Grundwissen

In einer Induktionsanordnung gelten folgende Bedingungen:

  • der Feldvektor \(\vec B\) (und damit die Richtung, die Orientierung und die Flussdichte) des homogenen magnetischen Feldes ist konstant
  • die Richtung und die Orientierung des Flächenvektors \(\vec A\) des Teils der Leiterschleife, der vom magnetische Feld durchsetzt wird, sind konstant
  • die Weite \(\varphi\) des Winkels zwischen Flächenvektor \(\vec A\) und Feldvektor \(\vec B\) ist konstant

Wenn sich der Betrag \(A\), d.h. der Inhalt der Fläche des Teils der Leiterschleife oder Spule mit Windungszahl \(N\), die vom magnetischen Feld durchsetzt wird, mit der Änderungsrate \(\frac{dA}{dt}\) ändert, dann berechnet sich die Induktionsspannung \(U_{\rm{i}}\) durch \(U_{\rm{i}} =  - N \cdot B \cdot \frac{dA}{dt} \cdot \cos\left(\varphi\right)\).

Zum Artikel Zu den Aufgaben

Induktion durch Änderung der Winkelweite

Grundwissen

In einer Induktionsanordnung gelten folgende Bedingungen:

  • die magnetische Flussdichte \(B\) des homogenen magnetischen Feldes ist konstant
  • der Flächeninhalt \(A\) der (Teil-)Fläche der Leiterschleife oder Spule mit der Windungszahl \(N\), die sich im magnetischen Feld befindet, ist konstant

Wenn sich die Richtung oder die Orientierung des Feldvektors \(\vec B\) oder des Flächenvektors \(\vec A\) und damit die Weite \(\varphi\) des Winkels zwischen dem Feldvektor \(\vec B\) und dem Flächenvektor \(\vec A\) mit der Änderungsrate \(\frac{d \varphi}{dt}\) ändert, dann berechnet sich die Induktionsspannung \(U_{\rm{i}}\) durch \(U_{\rm{i}} =  N \cdot B \cdot A \cdot \frac{d \varphi}{dt} \cdot \sin\left(\varphi\right)\).

Zum Artikel Zu den Aufgaben
Grundwissen

In einer Induktionsanordnung gelten folgende Bedingungen:

  • die magnetische Flussdichte \(B\) des homogenen magnetischen Feldes ist konstant
  • der Flächeninhalt \(A\) der (Teil-)Fläche der Leiterschleife oder Spule mit der Windungszahl \(N\), die sich im magnetischen Feld befindet, ist konstant

Wenn sich die Richtung oder die Orientierung des Feldvektors \(\vec B\) oder des Flächenvektors \(\vec A\) und damit die Weite \(\varphi\) des Winkels zwischen dem Feldvektor \(\vec B\) und dem Flächenvektor \(\vec A\) mit der Änderungsrate \(\frac{d \varphi}{dt}\) ändert, dann berechnet sich die Induktionsspannung \(U_{\rm{i}}\) durch \(U_{\rm{i}} =  N \cdot B \cdot A \cdot \frac{d \varphi}{dt} \cdot \sin\left(\varphi\right)\).

Zum Artikel Zu den Aufgaben

Induktionserscheinungen

Grundwissen

Induktionsspannungen \(U_{\rm{i}}\) kann man beobachten, wenn sich in einer Induktionsanordnung (ein magnetisches Feld und eine Leiterschleife mit angeschlossenem Spannungsmesser) eine der folgenden Größe ändert:

  • die magnetische Flussdichte \(B\) des magnetischen Feldes
  • der Inhalt \(A\) der Fläche der Leiterschleife, die vom magnetischen Feld durchsetzt wird
  • die Weite \(\varphi\) des Winkels zwischen dem magnetischem Feld und der Leiterschleife

Zum Artikel
Grundwissen

Induktionsspannungen \(U_{\rm{i}}\) kann man beobachten, wenn sich in einer Induktionsanordnung (ein magnetisches Feld und eine Leiterschleife mit angeschlossenem Spannungsmesser) eine der folgenden Größe ändert:

  • die magnetische Flussdichte \(B\) des magnetischen Feldes
  • der Inhalt \(A\) der Fläche der Leiterschleife, die vom magnetischen Feld durchsetzt wird
  • die Weite \(\varphi\) des Winkels zwischen dem magnetischem Feld und der Leiterschleife

Zum Artikel Zu den Aufgaben

Größen zur Beschreibung einer (elektromagnetischen) Welle

Grundwissen

  • Amplitude \(\hat E\), Schwingungsdauer \(T\) bzw. Frequenz \(f\) und Intensität \(I\) sind zentrale Größen zur Beschreibung einer elektromagnetischen Welle.
  • Für die Wellenlänge gilt \(\lambda=\frac{c}{f}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Amplitude \(\hat E\), Schwingungsdauer \(T\) bzw. Frequenz \(f\) und Intensität \(I\) sind zentrale Größen zur Beschreibung einer elektromagnetischen Welle.
  • Für die Wellenlänge gilt \(\lambda=\frac{c}{f}\).

Zum Artikel Zu den Aufgaben

Spezifischer Widerstand

Grundwissen

  • Der spezifische Widerstand \(\rho\) ist eine Materialkonstante des verwendeten Materials.
  • Für den spezifische Widerstand gilt \(\rho  = \frac{{R \cdot A}}{l}\), der Widerstand eines Leiters berechnet man mittels \(R = \rho  \cdot \frac{l}{A}\).
  • Gute Leiter wie Silber oder Kupfer haben einen geringen spezifischen Widerstand, Isolatoren einen sehr hohen spezifischen Widerstand.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Der spezifische Widerstand \(\rho\) ist eine Materialkonstante des verwendeten Materials.
  • Für den spezifische Widerstand gilt \(\rho  = \frac{{R \cdot A}}{l}\), der Widerstand eines Leiters berechnet man mittels \(R = \rho  \cdot \frac{l}{A}\).
  • Gute Leiter wie Silber oder Kupfer haben einen geringen spezifischen Widerstand, Isolatoren einen sehr hohen spezifischen Widerstand.

Zum Artikel Zu den Aufgaben

Elektrizitätslehre

Permanentmagnetismus

  • Warum zeigen Kompasse immer nach Norden?
  • Wie stellt man Magnete her?
  • Was versteht man unter einem Magnetfeld?
  • Welche Stoffe sind magnetisch?

Zum Themenbereich
Themenbereich

Elektrizitätslehre

Einfache Stromkreise

  • Warum spricht man eigentlich von Stromkreisen?
  • Was fließt denn in einem Stromkreis?
  • Was ist ein Kurzschluss?
  • Wie funktioniert eine Wechselschaltung?
  • Warum zeichnet man Schaltbilder?

Zum Themenbereich
Themenbereich

Elektrizitätslehre

Elektrische Grundgrößen

  • Was bedeuten eigentlich Volt …
  • … und Ampère?
  • … und was hat es mit dem OHMschen Gesetz auf sich?
  • Wie funktionieren elektrische Messgeräte?

Zum Themenbereich
Themenbereich

Elektrizitätslehre

Bewegte Ladungen in Feldern

  • Wie funktioniert eine Bildröhre?
  • Warum schützt das Erdmagnetfeld vor kosmischer Strahlung?
  • Wie funktionieren Teilchenbeschleuniger?
  • Kann man die Masse von Elektronen messen?
  • Wie groß ist die kleinste Ladung?

Zum Themenbereich
Themenbereich

Elektrizitätslehre

Elektrische Arbeit und Leistung

  • Wie misst das Elektrizitätswerk die gelieferte Energie?
  • Was ist eigentlich ein Watt?
  • Kann ein Mensch Wasser zum Kochen bringen?

Zum Themenbereich
Themenbereich

Elektrizitätslehre

Elektromagnetische Induktion

  • Wie funktioniert ein Elektromotor?
  • Wie erzeugt ein Dynamo elektrischen Strom?
  • Was bewirkt eine Spule?

Zum Themenbereich
Themenbereich

Elektrizitätslehre

Elektromagnetische Schwingungen

  • Aus welchen Bauteilen besteht ein elektromagnetischer Schwingkreis?
  • Wie lautet die THOMSON-Formel?
  • Wo bleibt die Energie eines gedämpften Schwingkreises?

Zum Themenbereich
Themenbereich

Elektrizitätslehre

Elektromagnetische Wellen

  • Was haben Funkwellen, Licht und RÖNTGEN-Strahlung gemeinsam?
  • Wann entstehen elektromagnetische Wellen?
  • Wie funktioniert ein Mikrowellenherd?

Zum Themenbereich
Themenbereich

Elektrizitätslehre

Glühelektrischer Effekt

  • Kann man Ladungen aus Leitern herausholen?
  • Was versteht man unter einer Elektronenkanone?
  • Wie macht man freie Elektronen sichtbar?

Zum Themenbereich
Themenbereich

Elektrizitätslehre

Komplexere Schaltkreise

  • Warum werden Steckdosen parallel geschaltet?
  • Wie sind die Lampen einer Lichterkette angeordnet?
  • Wie erweitert man den Messbereich von Messgeräten?

Zum Themenbereich
Themenbereich

Elektrizitätslehre

Kraft auf Stromleiter - E-Motor

  • Wie lautet die „UVW- oder Dreifingerregel“?
  • Wie ist ein Elektromotor aufgebaut?
  • Wie funktioniert eine Magnetschwebebahn?

Zum Themenbereich
Themenbereich

Elektrizitätslehre

Ladungen & Felder - Mittelstufe

  • Was sind elektrische Ladungen?
  • Welche besonderen Eigenschaften hat Bernstein?
  • Woher kommt der Name „Elektron“?
  • Gibt es eine kleinste Ladung?

Zum Themenbereich
Themenbereich

Elektrizitätslehre

Ladungen & elektrisches Feld

  • Wie lautet das Gesetz von COULOMB?
  • Wie ist das Feld im Innern eines Plattenkondensators?
  • Wie viel Energie kann ein Kondensator speichern?

Zum Themenbereich
Themenbereich

Elektrizitätslehre

Magnetisches Feld - Spule

  • Gibt es um Hochspannungsleitungen Felder?
  • Was versteht man unter der „Rechte- bzw. linke-Faust-Regel“?
  • Wie verhindert man Spannungsstöße beim Einschalten?
  • Wofür benötigt man Spulen?

Zum Themenbereich
Themenbereich

Elektrizitätslehre

Stromwirkungen

  • Wie funktioniert eine Glühlampe …
  • … und wie ein Durchlauferhitzer?
  • Kann man Magnete ein- und ausschalten?
  • Wie trennt man Wasserstoff und Sauerstoff?

Zum Themenbereich
Themenbereich

Elektrizitätslehre

Induktion und Transformator

  • Wie funktioniert ein Induktionsherd?
  • Was befindet sich in den brummenden Transformatorkästen?
  • Warum transportiert man elektrische Energie mit Hochspannung?

Zum Themenbereich
Themenbereich

Elektrizitätslehre

Wechselstromtechnik

  • Was ist denn ein Zeigerdiagramm?
  • Haben elektronische Bauteile immer den gleichen Widerstand?
  • Wie funktioniert ein Hochpass …
  • … und wie ein Tiefpass?

Zum Themenbereich
Themenbereich

Elektrizitätslehre

Ohmsches Gesetz & Kennlinien

  • Was versteht man unter der Kennlinie eines Leiters?
  • Wie sieht die Kennlinie eines ohmschen Widerstandes aus?
  • Wann ist Strom für den Körper gefährlich?

Zum Themenbereich
Themenbereich

Übergreifend

Energieentwertung

  • Welche verschiedenen Energieformen gibt es?
  • Was versteht man unter reversiblen …
  • … und was unter irreversiblen Vorgängen?
  • Wann wird Energie entwertet?

Zum Themenbereich
Themenbereich

Übergreifend

Energiespeicherung

  • Warum versucht man Energie zu speichern?
  • Kann man jede Energieform speichern?
  • Wie speichert man Energie aus regenerativen Quellen?

Zum Themenbereich
Themenbereich

Übergreifend

Fossile Energieversorgung

  • Was ist eigentlich fossile Energie …
  • … und wo kommt sie her?
  • Wie funktioniert ein klassisches Kraftwerk?
  • Was ist Kraft-Wärme-Kopplung?

Zum Themenbereich
Themenbereich