Direkt zum Inhalt
Suchergebnisse 31 - 60 von 123

Magnetfeld eines Stabmagneten - Wassserwannenversuch (Animation)

Download ( Animationen )

Die Animation zeigt die Darstellung von Feldlinien mithilfe einer Wasserwanne, in der eine an einem Korken montierte Stricknadel im Wasser die…

Zum Download
Download ( Animationen )

Die Animation zeigt die Darstellung von Feldlinien mithilfe einer Wasserwanne, in der eine an einem Korken montierte Stricknadel im Wasser die…

Zum Download

Induktion durch Feldänderung - Magnetfeldänderung durch bewegten Permanentmagnet (Animation)

Download ( Animationen )

Die Animation zeigt die Entstehung einer Induktionspannung bei ruhender Schleife und sich veränderndem Magnetfeld durch einen bewegten…

Zum Download
Download ( Animationen )

Die Animation zeigt die Entstehung einer Induktionspannung bei ruhender Schleife und sich veränderndem Magnetfeld durch einen bewegten…

Zum Download

Teilchenbahnen in Magnetfeldern - Magnetische Flasche (Animation)

Download ( Animationen )

Die Animation zeigt die Bahnkurve eines positiv geladenen Teilchens, das in eine sogenannte magnetische Flasche eintritt.

Zum Download
Download ( Animationen )

Die Animation zeigt die Bahnkurve eines positiv geladenen Teilchens, das in eine sogenannte magnetische Flasche eintritt.

Zum Download

Magnetismus-Denksport - Magnet an Eisen (Animation)

Download ( Animationen )

Die Animation zeigt das Verhalten eines Eisenstücks, dem sich ein Magnet an verschiedenen Stellen nähert.

Zum Download
Download ( Animationen )

Die Animation zeigt das Verhalten eines Eisenstücks, dem sich ein Magnet an verschiedenen Stellen nähert.

Zum Download

Modell der Elementarmagnete - Entmagnetisieren eines Weicheisenstabes durch Wärme (Animation)

Download ( Animationen )

Die Animation zeigt das Entmagnetisieren eines magnetisierten Weicheisenstabes durch Energiezufuhr in Form von Wärme.

Zum Download
Download ( Animationen )

Die Animation zeigt das Entmagnetisieren eines magnetisierten Weicheisenstabes durch Energiezufuhr in Form von Wärme.

Zum Download

Magnetismus-Denksport - Magnet an Kompassnadel (Animation)

Download ( Animationen )

Die Animation zeigt das Verhalten einer Kompassnadel, der sich ein Magnet nähert.

Zum Download
Download ( Animationen )

Die Animation zeigt das Verhalten einer Kompassnadel, der sich ein Magnet nähert.

Zum Download

Induktion und LORENTZ-Kraft

Grundwissen

  • Das Auftreten von Induktionsspannungen kann mithilfe der LORENTZ-Kraft erklärt werden
  • Ändert sich die von Magnetfeld durchsetzte Fläche einer Spule, so tritt Induktion auf
  • Eine Flächenänderung kann auch durch Rotation der Spule erreicht werden

Zum Artikel Zu den Aufgaben
Grundwissen

  • Das Auftreten von Induktionsspannungen kann mithilfe der LORENTZ-Kraft erklärt werden
  • Ändert sich die von Magnetfeld durchsetzte Fläche einer Spule, so tritt Induktion auf
  • Eine Flächenänderung kann auch durch Rotation der Spule erreicht werden

Zum Artikel Zu den Aufgaben

Modell der Elementarmagnete - Magnetisieren eines Kollektivs von Eisenfeilspänen (Animation)

Download ( Animationen )

Die Animation zeigt das Magnetisieren eines Kollektivs von Eisenfeilspänen durch Vorbeistreichen eines Permanentmagneten.

Zum Download
Download ( Animationen )

Die Animation zeigt das Magnetisieren eines Kollektivs von Eisenfeilspänen durch Vorbeistreichen eines Permanentmagneten.

Zum Download

Kraft auf stromführende Leiter im Magnetfeld - Leiter senkrecht zu Magnetfeld 2 (Animation)

Download ( Animationen )

Die Animation zeigt die Kraftwirkung auf einen stromdurchflossenen Leiter, der sich in einem senkrecht zur Stromrichtung zeigenden Magnetfeld…

Zum Download
Download ( Animationen )

Die Animation zeigt die Kraftwirkung auf einen stromdurchflossenen Leiter, der sich in einem senkrecht zur Stromrichtung zeigenden Magnetfeld…

Zum Download

Ferromagnetismus - Elementarmagnete (Animation)

Download ( Animationen )

Die Animation zeigt die atomare Begründung des Modells der Elementarmagnete.

Zum Download
Download ( Animationen )

Die Animation zeigt die atomare Begründung des Modells der Elementarmagnete.

Zum Download

Magnetfeld eines Stabmagneten (Simulation)

Download ( Simulation )

Diese Simulation demonstriert das Magnetfeld eines stabförmigen Dauermagneten, der mit Hilfe einer Magnetnadel untersucht werden kann. Die Magnetpole…

Zum Download
Download ( Simulation )

Diese Simulation demonstriert das Magnetfeld eines stabförmigen Dauermagneten, der mit Hilfe einer Magnetnadel untersucht werden kann. Die Magnetpole…

Zum Download

Modell der Elementarmagnete - Entmagnetisieren eines Kollektivs von Eisenfeilspänen durch Schütteln (Animation)

Download ( Animationen )

Die Animation zeigt das Entmagnetisieren eines magnetisierten Kollektivs von Eisenfeilspänen durch Schütteln.

Zum Download
Download ( Animationen )

Die Animation zeigt das Entmagnetisieren eines magnetisierten Kollektivs von Eisenfeilspänen durch Schütteln.

Zum Download

Magnetismus-Denksport - Eisen an Magnet (Animation)

Download ( Animationen )

Die Animation zeigt das Verhalten eines Magneten, dem sich ein Eisenstück an verschiedenen Stellen nähert.

Zum Download
Download ( Animationen )

Die Animation zeigt das Verhalten eines Magneten, dem sich ein Eisenstück an verschiedenen Stellen nähert.

Zum Download

Modell der Elementarmagnete - Entmagnetisieren eines Weicheisenstabes durch Stöße (Animation)

Download ( Animationen )

Die Animation zeigt das Entmagnetisieren eines magnetisierten Weicheisenstabes durch Energiezufuhr in Form von Stößen.

Zum Download
Download ( Animationen )

Die Animation zeigt das Entmagnetisieren eines magnetisierten Weicheisenstabes durch Energiezufuhr in Form von Stößen.

Zum Download

Kraft auf stromführende Leiter im Magnetfeld - Leiter parallel zu Magnetfeld (Animation)

Download ( Animationen )

Die Animation zeigt, dass im Falle eines stromdurchflossenen Leiters parallel zur Magnetfeldrichtung keine Kraftwirkung auftritt.

Zum Download
Download ( Animationen )

Die Animation zeigt, dass im Falle eines stromdurchflossenen Leiters parallel zur Magnetfeldrichtung keine Kraftwirkung auftritt.

Zum Download

Modell der Elementarmagnete - Magnetisieren eines Weicheisenstabes (Animation)

Download ( Animationen )

Die Animation zeigt das Magnetisieren eines Weicheisenstabes durch Vorbeistreichen eines Permanentmagneten.

Zum Download
Download ( Animationen )

Die Animation zeigt das Magnetisieren eines Weicheisenstabes durch Vorbeistreichen eines Permanentmagneten.

Zum Download

Kraft auf stromführende Leiter im Magnetfeld - Leiter senkrecht zu Magnetfeld 1 (Animation)

Download ( Animationen )

Die Animation zeigt die Kraftwirkung auf einen stromdurchflossenen Leiter, der sich in einem senkrecht zur Stromrichtung zeigenden Magnetfeld…

Zum Download
Download ( Animationen )

Die Animation zeigt die Kraftwirkung auf einen stromdurchflossenen Leiter, der sich in einem senkrecht zur Stromrichtung zeigenden Magnetfeld…

Zum Download

Elektrisches Feld

Grundwissen

  • Wenn in einem Raum elektrische Kraftwirkungen auftreten, so herrscht in diesem Raum ein elektrisches Feld.
  • Ein elektrisches Feld wird durch elektrische Ladungen erzeugt. Das Feld ist Vermittler für elektrische Kräfte.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Wenn in einem Raum elektrische Kraftwirkungen auftreten, so herrscht in diesem Raum ein elektrisches Feld.
  • Ein elektrisches Feld wird durch elektrische Ladungen erzeugt. Das Feld ist Vermittler für elektrische Kräfte.

Zum Artikel Zu den Aufgaben

Stehende elektromagnetische Welle (Simulation)

Grundwissen

  • Stehende elektromagnetische Wellen entstehen z.B. durch Überlagerung einer einlaufenden Welle mit der in der Metallplatte induzierten Welle.
  •  Der Abstand zweier benachbarter Knoten der stehenden Welle ist gleich der halben Wellenlänge der ursprünglichen, fortschreitenden Welle.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Stehende elektromagnetische Wellen entstehen z.B. durch Überlagerung einer einlaufenden Welle mit der in der Metallplatte induzierten Welle.
  •  Der Abstand zweier benachbarter Knoten der stehenden Welle ist gleich der halben Wellenlänge der ursprünglichen, fortschreitenden Welle.

Zum Artikel Zu den Aufgaben

Geladene Teilchen im magnetischen Längsfeld

Grundwissen

  • Geladene Teilchen, die in einem magnetischen Feld ruhen, erfahren keine Kraft und bleiben in Ruhe.

  • Geladene Teilchen, die sich parallel zu den Feldlinien eines magnetischen Feldes bewegen, erfahren ebenfalls keine Kraft und bewegen sich geradlinig gleichförmig weiter.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Geladene Teilchen, die in einem magnetischen Feld ruhen, erfahren keine Kraft und bleiben in Ruhe.

  • Geladene Teilchen, die sich parallel zu den Feldlinien eines magnetischen Feldes bewegen, erfahren ebenfalls keine Kraft und bewegen sich geradlinig gleichförmig weiter.

Zum Artikel Zu den Aufgaben

Elektrisches Feld und Feldliniendarstellung

Grundwissen

  • Im Raum um eine Ladung herrscht ein elektrisches Feld. Dieses elektrische Feld überträgt die Kraftwirkung dieser Ladung auf andere Ladungen.
  • Die elektrische Feldstärke ist definiert als der Quotient aus der elektrischen Kraft \({\vec F_{\rm{el}}}\) auf eine Probeladung und der Probeladung \(q\): \(\vec E = \frac{{{{\vec F}_{\rm{el}}}}}{q}\).
  • Für die elektrische Feldstärke \(\vec E\) im Raum um eine punktförmige Ladung \(Q\) gilt: Der Feldstärkevektor ist für eine positive Ladung radial von der Ladung weg und für eine negative Ladung radial zur Ladung hin orientiert, der Betrag ist umgekehrt proportional zum Quadrat des Abstands \(r\) und hat den Wert \(E = \frac{1}{4 \cdot \pi \cdot \varepsilon_0} \cdot \frac{\left|Q\right|}{r^2}\).
  • Die elektrische Feldstärke \(\vec E\) im Zwischenraum zweier entgegengesetzt geladener Platten (Flächeninhalt \(A\), Ladung \(Q\)) ist konstant (homogenes elektrisches Feld). Der Feldstärkevektor steht senkrecht zu den Plattenoberflächen, ist von der positiv zur negativ geladenen Platte orientiert und hat den Betrag \(E = \frac{1}{\varepsilon_0} \cdot \frac{\left|Q\right|}{A}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Im Raum um eine Ladung herrscht ein elektrisches Feld. Dieses elektrische Feld überträgt die Kraftwirkung dieser Ladung auf andere Ladungen.
  • Die elektrische Feldstärke ist definiert als der Quotient aus der elektrischen Kraft \({\vec F_{\rm{el}}}\) auf eine Probeladung und der Probeladung \(q\): \(\vec E = \frac{{{{\vec F}_{\rm{el}}}}}{q}\).
  • Für die elektrische Feldstärke \(\vec E\) im Raum um eine punktförmige Ladung \(Q\) gilt: Der Feldstärkevektor ist für eine positive Ladung radial von der Ladung weg und für eine negative Ladung radial zur Ladung hin orientiert, der Betrag ist umgekehrt proportional zum Quadrat des Abstands \(r\) und hat den Wert \(E = \frac{1}{4 \cdot \pi \cdot \varepsilon_0} \cdot \frac{\left|Q\right|}{r^2}\).
  • Die elektrische Feldstärke \(\vec E\) im Zwischenraum zweier entgegengesetzt geladener Platten (Flächeninhalt \(A\), Ladung \(Q\)) ist konstant (homogenes elektrisches Feld). Der Feldstärkevektor steht senkrecht zu den Plattenoberflächen, ist von der positiv zur negativ geladenen Platte orientiert und hat den Betrag \(E = \frac{1}{\varepsilon_0} \cdot \frac{\left|Q\right|}{A}\).

Zum Artikel Zu den Aufgaben

HALL-Effekt

Grundwissen

  • Befindet sich ein stromdurchflossener Leiter in einem homogenen Magnetfeld, dann baut sich senkrecht sowohl zur Stromfluss- als auch zur Magnetfeldrichtung über dem Leiter eine Spannung, die sogenannte HALL-Spannung \(U_{\rm{H}}\) auf.
  • Ist \(I\) die Stärke des Stroms durch den Leiter, \(B\) die magnetische Feldstärke und \(d\) die Dicke des Leiters parallel zu \(\vec B\), dann berechnet sich die HALL-Spannung durch \({U_{\rm{H}}} = {R_{\rm{H}}} \cdot \frac{{I \cdot B}}{d}\) mit der vom Material des Leiters abhängigen HALL-Konstanten \({R_{\rm{H}}}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Befindet sich ein stromdurchflossener Leiter in einem homogenen Magnetfeld, dann baut sich senkrecht sowohl zur Stromfluss- als auch zur Magnetfeldrichtung über dem Leiter eine Spannung, die sogenannte HALL-Spannung \(U_{\rm{H}}\) auf.
  • Ist \(I\) die Stärke des Stroms durch den Leiter, \(B\) die magnetische Feldstärke und \(d\) die Dicke des Leiters parallel zu \(\vec B\), dann berechnet sich die HALL-Spannung durch \({U_{\rm{H}}} = {R_{\rm{H}}} \cdot \frac{{I \cdot B}}{d}\) mit der vom Material des Leiters abhängigen HALL-Konstanten \({R_{\rm{H}}}\).

Zum Artikel Zu den Aufgaben

Elektromagnetischer Schwingkreis angeregt

Grundwissen

  • Einem angeregten elektromagnetischen Schwingkreis wird eine äußere Spannung \(U(t)\) aufgeprägt.
  •  Die Differentialgleichung lautet \(U(t) = L \cdot \ddot Q + \frac{Q}{C} + R \cdot \dot Q\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Einem angeregten elektromagnetischen Schwingkreis wird eine äußere Spannung \(U(t)\) aufgeprägt.
  •  Die Differentialgleichung lautet \(U(t) = L \cdot \ddot Q + \frac{Q}{C} + R \cdot \dot Q\)

Zum Artikel Zu den Aufgaben

Geladene Teilchen im magnetischen Feld (schräger Eintritt)

Grundwissen

  • Tritt ein geladenes Teilchen schräg zu den Feldlinien in ein homogenes Magnetisches Feld ein, so durchläuft es im B-Feld eine Schraubenlinie.
  • Für den Radius der Schraubenlinie gilt \(r = \frac{{m \cdot v}}{{q \cdot B}} \cdot \sin \left( \alpha  \right)\)
  • Die Ganghöhe beträgt \(h = \frac{{2 \cdot \pi  \cdot m \cdot v}}{{q \cdot B}} \cdot \cos \left( \alpha  \right)\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Tritt ein geladenes Teilchen schräg zu den Feldlinien in ein homogenes Magnetisches Feld ein, so durchläuft es im B-Feld eine Schraubenlinie.
  • Für den Radius der Schraubenlinie gilt \(r = \frac{{m \cdot v}}{{q \cdot B}} \cdot \sin \left( \alpha  \right)\)
  • Die Ganghöhe beträgt \(h = \frac{{2 \cdot \pi  \cdot m \cdot v}}{{q \cdot B}} \cdot \cos \left( \alpha  \right)\)

Zum Artikel Zu den Aufgaben

Größen zur Beschreibung einer (elektromagnetischen) Welle

Grundwissen

  • Amplitude \(\hat E\), Schwingungsdauer \(T\) bzw. Frequenz \(f\) und Intensität \(I\) sind zentrale Größen zur Beschreibung einer elektromagnetischen Welle.
  • Für die Wellenlänge gilt \(\lambda=\frac{c}{f}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Amplitude \(\hat E\), Schwingungsdauer \(T\) bzw. Frequenz \(f\) und Intensität \(I\) sind zentrale Größen zur Beschreibung einer elektromagnetischen Welle.
  • Für die Wellenlänge gilt \(\lambda=\frac{c}{f}\).

Zum Artikel Zu den Aufgaben

Geladene Teilchen in elektrischen und magnetischen Feldern

Grundwissen

  • Hier findest du vermischte Aufgaben zu allen Themen aus diesem Themenbereich

Zum Artikel Zu den Aufgaben
Grundwissen

  • Hier findest du vermischte Aufgaben zu allen Themen aus diesem Themenbereich

Zum Artikel Zu den Aufgaben

Herleitung der Wellenfunktion

Grundwissen

  • Die Wellenfunktion beschreibt die Ausbreitung einer Welle mathematisch.
  • Für eine in positive \(x\)-Richtung laufende Welle gilt: \(y(x;t) = \hat y \cdot \sin \left( {2\pi  \cdot \left( {\frac{t}{T} - \frac{x}{\lambda }} \right)} \right)\)

Zum Artikel
Grundwissen

  • Die Wellenfunktion beschreibt die Ausbreitung einer Welle mathematisch.
  • Für eine in positive \(x\)-Richtung laufende Welle gilt: \(y(x;t) = \hat y \cdot \sin \left( {2\pi  \cdot \left( {\frac{t}{T} - \frac{x}{\lambda }} \right)} \right)\)

Zum Artikel Zu den Aufgaben

Größen zur Beschreibung von Induktionsvorgängen

Grundwissen

  • Bei unseren Versuchen und Aufgaben zur Induktion ist das magnetische Feld stets homogen und kann durch einen einzigen Feldvektor \(\vec B\) beschrieben werden.
  • Bei unseren Versuchen und Aufgaben zur Induktion ist die Leiterschleife stets eben und kann durch einen einzigen Flächenvektor \(\vec A\) beschrieben werden. \(\vec A\) beschreibt dabei die (Teil-)Fläche der Leiterschleife, die sich im magnetischen Feld befindet.
  • Bei Induktionsvorgängen ist \(\varphi\) die Weite des Winkels zwischen dem Feldvektor \(\vec B\) und dem Flächenvektor \(\vec A\).

Zum Artikel
Grundwissen

  • Bei unseren Versuchen und Aufgaben zur Induktion ist das magnetische Feld stets homogen und kann durch einen einzigen Feldvektor \(\vec B\) beschrieben werden.
  • Bei unseren Versuchen und Aufgaben zur Induktion ist die Leiterschleife stets eben und kann durch einen einzigen Flächenvektor \(\vec A\) beschrieben werden. \(\vec A\) beschreibt dabei die (Teil-)Fläche der Leiterschleife, die sich im magnetischen Feld befindet.
  • Bei Induktionsvorgängen ist \(\varphi\) die Weite des Winkels zwischen dem Feldvektor \(\vec B\) und dem Flächenvektor \(\vec A\).

Zum Artikel Zu den Aufgaben

WIENscher Geschwindigkeitsfilter

Grundwissen

  • Ein WIENscher Geschwindigkeitsfilter besteht aus einem homogenen elektrischen Feld und einem homogenen magnetischem Feld, die senkrecht zueinander stehen. Die Elektronen treten senkrecht zu beiden Feldern ein.
  • Nur wenn ein Elektron die passende Geschwindigkeit \(v=\frac{E}{B}\) besitzt, sind die elektrische Kraft und die LORENTZ-Kraft auf das Elektronen gleich groß und es passiert den Geschwindigkeitsfilter.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ein WIENscher Geschwindigkeitsfilter besteht aus einem homogenen elektrischen Feld und einem homogenen magnetischem Feld, die senkrecht zueinander stehen. Die Elektronen treten senkrecht zu beiden Feldern ein.
  • Nur wenn ein Elektron die passende Geschwindigkeit \(v=\frac{E}{B}\) besitzt, sind die elektrische Kraft und die LORENTZ-Kraft auf das Elektronen gleich groß und es passiert den Geschwindigkeitsfilter.

Zum Artikel Zu den Aufgaben

Modellversuch zur Magnetisierung (Animation)

Download ( Animationen )

Die Animation zeigt die Beobachtungen und die Erklärung zum Modellversuch zur Magnetisierung.

Zum Download
Download ( Animationen )

Die Animation zeigt die Beobachtungen und die Erklärung zum Modellversuch zur Magnetisierung.

Zum Download