Direkt zum Inhalt
Suchergebnisse 541 - 570 von 599

Homogenes elektrisches Feld - Arbeit (Simulation)

Download ( Simulation )

Die Simulation zeigt die Arbeit an einer Punktladung (genauer am System Platten-Punktladung) beim Bewegen der Punktladung im Zwischenraum zweier…

Zum Download
Download ( Simulation )

Die Simulation zeigt die Arbeit an einer Punktladung (genauer am System Platten-Punktladung) beim Bewegen der Punktladung im Zwischenraum zweier…

Zum Download

Homogenes elektrisches Feld - Spannung (Simulation)

Download ( Simulation )

Die Simulation zeigt die Spannung zwischen zwei Punkten im Zwischenraum zweier entgegengesetzt geladener Platten. Die Simulation rechnet mit dem (für…

Zum Download
Download ( Simulation )

Die Simulation zeigt die Spannung zwischen zwei Punkten im Zwischenraum zweier entgegengesetzt geladener Platten. Die Simulation rechnet mit dem (für…

Zum Download

Homogenes elektrisches Feld

Grundwissen

  • Hat die elektrische Feldstärke \(\vec E\) in einem Raumgebiet immer die gleiche Richtung, die gleiche Orientierung und den gleichen Betrag, so sprechen wir von einem homogenen elektrischen Feld in diesem Raumgebiet.
  • Wichtigstes Beispiel für ein homogenes elektrisches Feld ist das Feld im Zwischenraum zweier entgegengesetzt geladener Platten.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Hat die elektrische Feldstärke \(\vec E\) in einem Raumgebiet immer die gleiche Richtung, die gleiche Orientierung und den gleichen Betrag, so sprechen wir von einem homogenen elektrischen Feld in diesem Raumgebiet.
  • Wichtigstes Beispiel für ein homogenes elektrisches Feld ist das Feld im Zwischenraum zweier entgegengesetzt geladener Platten.

Zum Artikel Zu den Aufgaben

Homogenes elektrisches Feld - Feldlinien (Simulation)

Download ( Simulation )

Die Simulation zeigt die Darstellung des elektrischen Feldes im Zwischenraum zweier entgegengesetzt geladener Platten durch Feldlinien. Die…

Zum Download
Download ( Simulation )

Die Simulation zeigt die Darstellung des elektrischen Feldes im Zwischenraum zweier entgegengesetzt geladener Platten durch Feldlinien. Die…

Zum Download

Homogenes elektrisches Feld - Äquipotenziallinien (Simulation)

Download ( Simulation )

Die Simulation zeigt die Darstellung des elektrischen Feldes im Zwischenraum zweier entgegengesetzt geladener Platten durch Äquipotenziallinien. Die…

Zum Download
Download ( Simulation )

Die Simulation zeigt die Darstellung des elektrischen Feldes im Zwischenraum zweier entgegengesetzt geladener Platten durch Äquipotenziallinien. Die…

Zum Download

COULOMB-Feld - Elektrische Feldstärke (Simulation)

Download ( Simulation )

Die Simulation zeigt die elektrische Feldstärke im Raum um eine ortsfeste Punktladung. Die Simulation rechnet in einem Raumbereich mit den…

Zum Download
Download ( Simulation )

Die Simulation zeigt die elektrische Feldstärke im Raum um eine ortsfeste Punktladung. Die Simulation rechnet in einem Raumbereich mit den…

Zum Download

COULOMB-Feld - Feldlinien (Simulation)

Download ( Simulation )

Die Simulation zeigt die Darstellung des elektrischen Feldes im Raumbereich um eine Punktladung durch Feldlinien. Die Simulation rechnet in einem…

Zum Download
Download ( Simulation )

Die Simulation zeigt die Darstellung des elektrischen Feldes im Raumbereich um eine Punktladung durch Feldlinien. Die Simulation rechnet in einem…

Zum Download

COULOMB-Feld - Arbeit (Simulation)

Download ( Simulation )

Die Simulation zeigt die Arbeit an einer beweglichen Punktladung (genauer am System der beiden Ladungen) beim Bewegen im Raumbereich um eine ortsfeste…

Zum Download
Download ( Simulation )

Die Simulation zeigt die Arbeit an einer beweglichen Punktladung (genauer am System der beiden Ladungen) beim Bewegen im Raumbereich um eine ortsfeste…

Zum Download

COULOMB-Feld - Potenzielle Energie (Simulation)

Download ( Simulation )

Die Simulation zeigt die potenzielle Energie einer beweglichen Punktladung (genauer des Systems der beiden Ladungen) im Raumbereich um eine ortsfeste…

Zum Download
Download ( Simulation )

Die Simulation zeigt die potenzielle Energie einer beweglichen Punktladung (genauer des Systems der beiden Ladungen) im Raumbereich um eine ortsfeste…

Zum Download

COULOMB-Feld - Potenzial (Simulation)

Download ( Simulation )

Die Simulation zeigt das Potenzial im Raum um eine ortsfeste Punktladung. Die Simulation rechnet in einem Raumbereich mit den Abmessungen…

Zum Download
Download ( Simulation )

Die Simulation zeigt das Potenzial im Raum um eine ortsfeste Punktladung. Die Simulation rechnet in einem Raumbereich mit den Abmessungen…

Zum Download

COULOMB-Feld - Äquipotenziallinien (Simulation)

Download ( Simulation )

Die Simulation zeigt die Darstellung des elektrischen Feldes im Raum um eine ortsfeste Punktladung durch Äquipotenziallinien. Die Simulation rechnet…

Zum Download
Download ( Simulation )

Die Simulation zeigt die Darstellung des elektrischen Feldes im Raum um eine ortsfeste Punktladung durch Äquipotenziallinien. Die Simulation rechnet…

Zum Download

COULOMB-Feld - Spannung (Simulation)

Download ( Simulation )

Die Simulation zeigt die Spannung zwischen zwei Punkten im Raumbereich um eine ortsfeste Punktladung. Die Simulation rechnet in einem Raumbereich mit…

Zum Download
Download ( Simulation )

Die Simulation zeigt die Spannung zwischen zwei Punkten im Raumbereich um eine ortsfeste Punktladung. Die Simulation rechnet in einem Raumbereich mit…

Zum Download

Potenzial

Grundwissen

  • Jedem Punkt \(\rm{P}\) eines elektrischen Feldes kann ein Potenzial \(\varphi_{\rm{P}_0} \left( \rm{P} \right)=\frac{{{E_{{\rm{pot}}{\rm{,}}{{\rm{P}}_0}}}\left( {\rm{P}} \right)}}{q}\) zugeordnet werden. Dieses Potenzial ist von der Größe und der Anordnung der felderzeugenden Ladung \(Q\) und der Wahl eines Bezugspunktes \(\rm{P}_0\) abhängig.
  • Im COULOMB-Feld wählt man den Bezugspunkt des Potenzials unendlich weit von der felderzeugenden Ladung entfernt. Dann hat das Potenzial im Abstand \(r\) von der felderzeugenden Ladung den Wert \( {\varphi \left( r \right)} = \frac{1}{{4 \cdot \pi \cdot {\varepsilon _0}}} \cdot Q \cdot \frac{1}{r}\).
  • Im homogenen elektrischen Feld (z.B. im Zwischenraum zweier entgegengesetzt geladener Platten) wählt man als Bezugspunkt des Potenzials die Oberfläche der negativ geladenen Platte. Dann hat das Potenzial im Abstand \(x\) von der negativ geladenen Platte den Wert \(\varphi \left( x \right) = E \cdot x\) bzw. \(\varphi \left( x \right) = \frac{1}{{{\varepsilon_0}}} \cdot \frac{{\left| Q \right|}}{A} \cdot x\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Jedem Punkt \(\rm{P}\) eines elektrischen Feldes kann ein Potenzial \(\varphi_{\rm{P}_0} \left( \rm{P} \right)=\frac{{{E_{{\rm{pot}}{\rm{,}}{{\rm{P}}_0}}}\left( {\rm{P}} \right)}}{q}\) zugeordnet werden. Dieses Potenzial ist von der Größe und der Anordnung der felderzeugenden Ladung \(Q\) und der Wahl eines Bezugspunktes \(\rm{P}_0\) abhängig.
  • Im COULOMB-Feld wählt man den Bezugspunkt des Potenzials unendlich weit von der felderzeugenden Ladung entfernt. Dann hat das Potenzial im Abstand \(r\) von der felderzeugenden Ladung den Wert \( {\varphi \left( r \right)} = \frac{1}{{4 \cdot \pi \cdot {\varepsilon _0}}} \cdot Q \cdot \frac{1}{r}\).
  • Im homogenen elektrischen Feld (z.B. im Zwischenraum zweier entgegengesetzt geladener Platten) wählt man als Bezugspunkt des Potenzials die Oberfläche der negativ geladenen Platte. Dann hat das Potenzial im Abstand \(x\) von der negativ geladenen Platte den Wert \(\varphi \left( x \right) = E \cdot x\) bzw. \(\varphi \left( x \right) = \frac{1}{{{\varepsilon_0}}} \cdot \frac{{\left| Q \right|}}{A} \cdot x\).

Zum Artikel Zu den Aufgaben

Kapazität des Plattenkondensators

Grundwissen

  • Die Kapazität eines Plattenkondensators (Flächeninhalt der (gleichgroßen) Platten \(A\), Plattenabstand \(d\), Dielektrikum mit relativer Dielektrizitätskonstante \({\varepsilon _r}\)) berechnet sich durch \(C = {\varepsilon _0} \cdot {\varepsilon _r} \cdot \frac{A}{d}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Kapazität eines Plattenkondensators (Flächeninhalt der (gleichgroßen) Platten \(A\), Plattenabstand \(d\), Dielektrikum mit relativer Dielektrizitätskonstante \({\varepsilon _r}\)) berechnet sich durch \(C = {\varepsilon _0} \cdot {\varepsilon _r} \cdot \frac{A}{d}\).

Zum Artikel Zu den Aufgaben

Kondensator und Kapazität

Grundwissen

  • Ein Kondensator ist eine Anordnung von zwei Leitern, zwischen denen sich ein isolierendes Material, ein sogenanntes Dielektrikum befindet.
  • Legt man über die beiden Leiter eine Spannung an, dann befinden sich nach einiger Zeit auf den Leitern entgegengesetzte, betraglich gleich große Ladungen.
  • Der Ladungsbetrag \(Q\), der sich auf dem Kondensator befindet, ist proportional zur Spannung \(U\), die über dem Kondensator anliegt: \(Q=C \cdot U\). Den Proportionalitätsfaktor \(C\) bezeichnet man als Kapazität des Kondensators. 

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ein Kondensator ist eine Anordnung von zwei Leitern, zwischen denen sich ein isolierendes Material, ein sogenanntes Dielektrikum befindet.
  • Legt man über die beiden Leiter eine Spannung an, dann befinden sich nach einiger Zeit auf den Leitern entgegengesetzte, betraglich gleich große Ladungen.
  • Der Ladungsbetrag \(Q\), der sich auf dem Kondensator befindet, ist proportional zur Spannung \(U\), die über dem Kondensator anliegt: \(Q=C \cdot U\). Den Proportionalitätsfaktor \(C\) bezeichnet man als Kapazität des Kondensators. 

Zum Artikel Zu den Aufgaben

Kondensatorformel - Formelumstellung (Animation)

Download ( Animationen )

Die Animation zeigt das schrittweise Auflösen der Kondensatorformel nach den drei in der Formel auftretenden Größen.

Zum Download
Download ( Animationen )

Die Animation zeigt das schrittweise Auflösen der Kondensatorformel nach den drei in der Formel auftretenden Größen.

Zum Download

Auswerten von Entladekurven

Grundwissen

  • Aus Messwerten von der Entladung eines Kondensators kannst du mit verschiedenen Methoden die konkreten Werte für die Parameter der Exponentialfunktion, die die gemessene Größe beschreibt, bestimmen.
  • Welche Methode du wählst hängt von der Aufgabenstellung und den vorhandenen technischen Hilfsmitteln wie GTR oder Tabellenkalkulation ab.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Aus Messwerten von der Entladung eines Kondensators kannst du mit verschiedenen Methoden die konkreten Werte für die Parameter der Exponentialfunktion, die die gemessene Größe beschreibt, bestimmen.
  • Welche Methode du wählst hängt von der Aufgabenstellung und den vorhandenen technischen Hilfsmitteln wie GTR oder Tabellenkalkulation ab.

Zum Artikel Zu den Aufgaben

Magnetfeld von geraden Leitern

Grundwissen

  • Wenn durch einen geraden und sehr langen Leiter ein elektrischer Strom fließt, dann haben die Feldlinien des magnetischen Feldes die Form von Kreisen, die in Ebenen senkrecht zu dem Leiter verlaufen und ihren Mittelpunkt im Leiter haben.
  • Die Orientierung des Feldes kann man mit der ersten Rechte-Faust-Regel bestimmen.
  • Ist \(I\) die Stärke des Stroms im Leiter und \(r\) der Abstand eines Punktes zum Leiter, dann berechnet sich der Betrag der magnetischen Flussdichte \(B\) an diesem Punkt durch \(B = {\mu _0} \cdot \frac{1}{{2 \, \pi \cdot r}} \cdot I\) mit der magnetischen Feldkonstanten \(\mu_0=1{,}2566\cdot 10^{-6}\,\rm{\frac{N}{A^2}}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Wenn durch einen geraden und sehr langen Leiter ein elektrischer Strom fließt, dann haben die Feldlinien des magnetischen Feldes die Form von Kreisen, die in Ebenen senkrecht zu dem Leiter verlaufen und ihren Mittelpunkt im Leiter haben.
  • Die Orientierung des Feldes kann man mit der ersten Rechte-Faust-Regel bestimmen.
  • Ist \(I\) die Stärke des Stroms im Leiter und \(r\) der Abstand eines Punktes zum Leiter, dann berechnet sich der Betrag der magnetischen Flussdichte \(B\) an diesem Punkt durch \(B = {\mu _0} \cdot \frac{1}{{2 \, \pi \cdot r}} \cdot I\) mit der magnetischen Feldkonstanten \(\mu_0=1{,}2566\cdot 10^{-6}\,\rm{\frac{N}{A^2}}\).

Zum Artikel Zu den Aufgaben

Magnetfeld von langen Zylinderspulen

Grundwissen

  • Wenn durch eine lange Zylinderspule ein elektrischer Strom fließt, dann herrscht im Innenraum der Spule ein homogenes Magnetfeld. Die Feldlinien verlaufen dort parallel zur Zylinderachse.
  • Die Orientierung des magnetischen Feldes kann man mit der zweiten Rechte-Faust-Regel bestimmen.
  • Ist \(N\) die Anzahl der Windungen und \(l\) die Länge der Spule sowie \(I\) die Stärke des Stroms durch die Spule, dann berechnet sich der Betrag \(B\) der magnetischen Flussdichte im Innenraum der Spule durch \(B = {\mu _0} \cdot \frac{N}{l} \cdot I\) mit der magnetischen Feldkonstanten \(\mu_0=1{,}2566\cdot 10^{-6}\,\rm{\frac{N}{A^2}}\).
  • Befindet sich im Innenraum der langen Zylinderspule ein Kern aus einem ferromagnetischen Stoff mit der relativen Permeabilität \(\mu_{\rm{r}}\), dann berechnet sich der Betrag \(B\) der magnetischen Flussdichte im Innenraum der Spule durch \(B = \mu _0 \cdot \mu_{\rm{r}} \cdot \frac{N}{l} \cdot I\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Wenn durch eine lange Zylinderspule ein elektrischer Strom fließt, dann herrscht im Innenraum der Spule ein homogenes Magnetfeld. Die Feldlinien verlaufen dort parallel zur Zylinderachse.
  • Die Orientierung des magnetischen Feldes kann man mit der zweiten Rechte-Faust-Regel bestimmen.
  • Ist \(N\) die Anzahl der Windungen und \(l\) die Länge der Spule sowie \(I\) die Stärke des Stroms durch die Spule, dann berechnet sich der Betrag \(B\) der magnetischen Flussdichte im Innenraum der Spule durch \(B = {\mu _0} \cdot \frac{N}{l} \cdot I\) mit der magnetischen Feldkonstanten \(\mu_0=1{,}2566\cdot 10^{-6}\,\rm{\frac{N}{A^2}}\).
  • Befindet sich im Innenraum der langen Zylinderspule ein Kern aus einem ferromagnetischen Stoff mit der relativen Permeabilität \(\mu_{\rm{r}}\), dann berechnet sich der Betrag \(B\) der magnetischen Flussdichte im Innenraum der Spule durch \(B = \mu _0 \cdot \mu_{\rm{r}} \cdot \frac{N}{l} \cdot I\).

Zum Artikel Zu den Aufgaben

Magnetfeld von HELMHOLTZ-Spulen

Grundwissen

  • Als HELMHOLTZ-Spule bezeichnet man eine Anordnung von zwei kurzen Spulen mit großem Radius \(R\) und gleicher Windungszahl, die im Abstand \(R\) auf derselben Achse parallel aufgestellt und gleichsinnig von Strom durchflossen werden. In der Mittelebene der beiden Spulen entsteht ein Bereich mit weitgehend homogenem magnetischem Feld.
  • Die Orientierung des magnetischen Feldes kann man mit der zweiten Rechte-Faust-Regel bestimmen.
  • Ist \(N\) die Anzahl der Windungen und \(R\) der Radius der Spulen sowie \(I\) die Stärke des Stroms durch die Spule, dann berechnet sich der Betrag \(B\) der magnetischen Flussdichte in der Mittelebene des Spulenpaars durch \(B = {\mu _0} \cdot \frac{{8 \cdot N}}{{{{\sqrt {125} }} \cdot R}} \cdot I\) mit der magnetischen Feldkonstanten \(\mu_0=1{,}2566\cdot 10^{-6}\,\rm{\frac{N}{A^2}}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Als HELMHOLTZ-Spule bezeichnet man eine Anordnung von zwei kurzen Spulen mit großem Radius \(R\) und gleicher Windungszahl, die im Abstand \(R\) auf derselben Achse parallel aufgestellt und gleichsinnig von Strom durchflossen werden. In der Mittelebene der beiden Spulen entsteht ein Bereich mit weitgehend homogenem magnetischem Feld.
  • Die Orientierung des magnetischen Feldes kann man mit der zweiten Rechte-Faust-Regel bestimmen.
  • Ist \(N\) die Anzahl der Windungen und \(R\) der Radius der Spulen sowie \(I\) die Stärke des Stroms durch die Spule, dann berechnet sich der Betrag \(B\) der magnetischen Flussdichte in der Mittelebene des Spulenpaars durch \(B = {\mu _0} \cdot \frac{{8 \cdot N}}{{{{\sqrt {125} }} \cdot R}} \cdot I\) mit der magnetischen Feldkonstanten \(\mu_0=1{,}2566\cdot 10^{-6}\,\rm{\frac{N}{A^2}}\).

Zum Artikel Zu den Aufgaben

Kraft zwischen Strömen (Simulation)

Download ( Simulation )

Die Simulation zeigt die gegenseitigen Kräfte zwischen zwei stromdurchflossenen Leiterstücken in Abhängigkeit von den relevanten Größen.

Zum Download
Download ( Simulation )

Die Simulation zeigt die gegenseitigen Kräfte zwischen zwei stromdurchflossenen Leiterstücken in Abhängigkeit von den relevanten Größen.

Zum Download

Kraft zwischen Strömen

Grundwissen

  • Elektrische Ströme üben aufeinander Kräfte aus; diese Kräfte bezeichnen wir als magnetische Kräfte.
  • Alle magnetischen Erscheinungen beruhen auf diesen magnetischen Kräften: Der Permanentmagnetismus beruht auf stromartigen Effekten in den Atomen, der Erdmagnetismus beruht auf dem Strom von elektrisch leitender Flüssigkeit im äußeren Erdkern.

Zum Artikel
Grundwissen

  • Elektrische Ströme üben aufeinander Kräfte aus; diese Kräfte bezeichnen wir als magnetische Kräfte.
  • Alle magnetischen Erscheinungen beruhen auf diesen magnetischen Kräften: Der Permanentmagnetismus beruht auf stromartigen Effekten in den Atomen, der Erdmagnetismus beruht auf dem Strom von elektrisch leitender Flüssigkeit im äußeren Erdkern.

Zum Artikel Zu den Aufgaben

Bestimmung der magnetischen Kraft

Grundwissen

  • Herrscht an einem Punkt ein magnetisches Feld mit bekannter Richtung, Orientierung und bekanntem Betrag \(B\) der magnetischen Flussdichte und befindet sich an diesem Punkt ein Leiterstück der Länge \(l\), durch das ein Strom der Stärke \(I\) fließt, dann kannst du die Richtung, die Orientierung und den Betrag der magnetischen Kraft \(\vec F_{\rm{mag}}\) auf dieses Leiterstück bestimmen.
  • Die Richtung und die Orientierung der magnetischen Kraft \(\vec F_{\rm{mag}}\) auf das Leiterstück bestimmst du mit Hilfe der Drei-Finger-Regel der rechten Hand (Daumen in elektrische Stromrichtung, Zeigefinger in Magnetfeldrichtung → Mittelfinger in Kraftrichtung).
  • Den Betrag \(F_{\rm{mag}}\) der magnetischen Kraft auf das Leiterstück berechnest du mit der Formel \({F_{{\rm{mag}}}} = I \cdot l \cdot  B \cdot \sin \left( \varphi \right)\), wobei \(\varphi\) die Weite des Winkels zwischen \(\vec B\) und \(\vec I\) ist.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Herrscht an einem Punkt ein magnetisches Feld mit bekannter Richtung, Orientierung und bekanntem Betrag \(B\) der magnetischen Flussdichte und befindet sich an diesem Punkt ein Leiterstück der Länge \(l\), durch das ein Strom der Stärke \(I\) fließt, dann kannst du die Richtung, die Orientierung und den Betrag der magnetischen Kraft \(\vec F_{\rm{mag}}\) auf dieses Leiterstück bestimmen.
  • Die Richtung und die Orientierung der magnetischen Kraft \(\vec F_{\rm{mag}}\) auf das Leiterstück bestimmst du mit Hilfe der Drei-Finger-Regel der rechten Hand (Daumen in elektrische Stromrichtung, Zeigefinger in Magnetfeldrichtung → Mittelfinger in Kraftrichtung).
  • Den Betrag \(F_{\rm{mag}}\) der magnetischen Kraft auf das Leiterstück berechnest du mit der Formel \({F_{{\rm{mag}}}} = I \cdot l \cdot  B \cdot \sin \left( \varphi \right)\), wobei \(\varphi\) die Weite des Winkels zwischen \(\vec B\) und \(\vec I\) ist.

Zum Artikel Zu den Aufgaben

Bestimmung der LORENTZ-Kraft

Grundwissen

  • Herrscht an einem Punkt ein magnetisches Feld \(\vec B\) mit bekannter Richtung, Orientierung und Flussdichte \(B\), und bewegt sich an diesem Punkt ein Teilchen mit der Ladung \(q\) und der Geschwindigkeit \(\vec v\), dann kannst du die Richtung, die Orientierung und den Betrag der LORENTZ-Kraft \(\vec F_{\rm{L}}\) auf dieses Teilchen bestimmen.
  • Die Richtung und die Orientierung der LORENTZ-Kraft \(\vec F_{\rm{L}}\) auf das Teilchen bestimmst du mit Hilfe der Drei-Finger-Regel der rechten Hand (Daumen in Bewegungsrichtung eines positiv geladenen Teilchens, Zeigefinger in Magnetfeldrichtung → Mittelfinger in Kraftrichtung).
  • Den Betrag \(F_{\rm{L}}\) der LORENTZ-Kraft auf das Teilchen berechnest du mit der Formel \({F_{{\rm{L}}}} = q \cdot v \cdot  B \cdot \sin \left( \varphi \right)\), wobei \(\varphi\) die Weite des Winkels zwischen \(\vec B\) und \(\vec v\) ist.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Herrscht an einem Punkt ein magnetisches Feld \(\vec B\) mit bekannter Richtung, Orientierung und Flussdichte \(B\), und bewegt sich an diesem Punkt ein Teilchen mit der Ladung \(q\) und der Geschwindigkeit \(\vec v\), dann kannst du die Richtung, die Orientierung und den Betrag der LORENTZ-Kraft \(\vec F_{\rm{L}}\) auf dieses Teilchen bestimmen.
  • Die Richtung und die Orientierung der LORENTZ-Kraft \(\vec F_{\rm{L}}\) auf das Teilchen bestimmst du mit Hilfe der Drei-Finger-Regel der rechten Hand (Daumen in Bewegungsrichtung eines positiv geladenen Teilchens, Zeigefinger in Magnetfeldrichtung → Mittelfinger in Kraftrichtung).
  • Den Betrag \(F_{\rm{L}}\) der LORENTZ-Kraft auf das Teilchen berechnest du mit der Formel \({F_{{\rm{L}}}} = q \cdot v \cdot  B \cdot \sin \left( \varphi \right)\), wobei \(\varphi\) die Weite des Winkels zwischen \(\vec B\) und \(\vec v\) ist.

Zum Artikel Zu den Aufgaben

Bestimmung der magnetischen Kraft - Formelumstellung (Animation)

Download ( Simulation )

Die Animation zeigt das schrittweise Auflösen der Formel zur Berechnung der magnetischen Kraft nach den fünf in der Formel auftretenden Größen.

Zum Download
Download ( Simulation )

Die Animation zeigt das schrittweise Auflösen der Formel zur Berechnung der magnetischen Kraft nach den fünf in der Formel auftretenden Größen.

Zum Download

Bestimmung der LORENTZ-Kraft - Formelumstellung (Animation)

Download ( Simulation )

Die Animation zeigt das schrittweise Auflösen der Formel zur Berechnung der LORENTZ-Kraft nach den fünf in der Formel auftretenden Größen.

Zum Download
Download ( Simulation )

Die Animation zeigt das schrittweise Auflösen der Formel zur Berechnung der LORENTZ-Kraft nach den fünf in der Formel auftretenden Größen.

Zum Download

Kombinationen von Widerständen (Simulation)

Download ( Simulation )

Mit dieser Simulation lassen sich einfache Schaltungen aus (ohmschen) Widerständen aufbauen. Oben auf der Schaltfläche befindet sich der…

Zum Download
Download ( Simulation )

Mit dieser Simulation lassen sich einfache Schaltungen aus (ohmschen) Widerständen aufbauen. Oben auf der Schaltfläche befindet sich der…

Zum Download

Magnetische Flussdichte im Innenraum einer luftgefüllten Spule - Formelumstellung (Animation)

Download ( Animationen )

Die Animation zeigt das schrittweise Auflösen der Formel zur Berechnung der magnetischen Flussdichte im Innenraum einer luftgefüllten Spule nach den…

Zum Download
Download ( Animationen )

Die Animation zeigt das schrittweise Auflösen der Formel zur Berechnung der magnetischen Flussdichte im Innenraum einer luftgefüllten Spule nach den…

Zum Download

HALL-Spannung - Formelumstellung (Animation)

Download ( Simulation )

Die Animation zeigt das schrittweise Auflösen der Formel zur Berechnung der HALL-Spannung nach den fünf in der Formel auftretenden Größen.

Zum Download
Download ( Simulation )

Die Animation zeigt das schrittweise Auflösen der Formel zur Berechnung der HALL-Spannung nach den fünf in der Formel auftretenden Größen.

Zum Download

Kombinationen von Widerständen, Spulen und Kondensatoren (Simulation)

Download ( Simulation )

Mit dieser Simulation lassen sich aus (ohmschen) Widerständen, idealen Induktionsspulen (ohne Widerstand) und Kondensatoren einfache…

Zum Download
Download ( Simulation )

Mit dieser Simulation lassen sich aus (ohmschen) Widerständen, idealen Induktionsspulen (ohne Widerstand) und Kondensatoren einfache…

Zum Download