Ausblick
Du bist gut in Mathe und schon ein halber Ingenieur? Hier gibt’s für Fortgeschrittene vertiefende Inhalte und spannende Anwendungen aus Alltag und Technik.
-
FEYNMAN zum Energiebegriff
-
Einführende Videos
-
Energiequellen
-
Verschiedene Energien
-
Verschiedene Leistungen
-
Verschiedene Wirkungsgrade
-
Energieumsatz im Sport
-
Energiefluss beim Hybridauto
-
Messung des Energieumsatzes
-
Energieumsatz beim Fahrradfahren
-
Energie und Leistung beim Fahrradfahren
-
Theoretische Herleitung der Formel für die potentielle Energie
- Um einen Körper der Masse \(m\) an einem Ort mit dem Ortsfaktor \(g\) vom Nullniveau Erdboden auf eine Höhe \(h\) anzuheben benötigt man die Arbeit \(W=m \cdot g \cdot h\).
- Damit beträgt die potentielle Energie \(E_{\rm{pot}}\) des Systems "Erde-Körper" nach dem Anheben \(E_{\rm{pot}}=m \cdot g \cdot h\).
-
Sprungkraft
-
Energiebetrachtungen bei Bällen
-
Theoretische Herleitung der Formel für die kinetische Energie
- Um einen Körper der Masse \(m\) aus der Ruhe auf eine Geschwindigkeit \(v\) zu beschleunigen benötigt man die Arbeit \(W= \frac{1}{2} \cdot m \cdot v^2\).
- Damit beträgt die kinetische Energie \(E_{\rm{kin}}\) eines Körpers nach dem Beschleunigen \(E_{\rm{kin}}=\frac{1}{2} \cdot m \cdot v^2\).
-
Theoretische Herleitung der Formel für die Spannenergie
- Um eine Feder mit der Federkonstante \(D\) um eine Strecke der Länge \(s\) zu spannen benötigt man die Arbeit \(W= \frac{1}{2} \cdot D \cdot s^2\).
- Damit beträgt die Spannenergie \(E_{\rm{Spann}}\) einer Feder nach dem Spannen \(E_{\rm{Spann}}=\frac{1}{2} \cdot D \cdot s^2\).