Direkt zum Inhalt
Suchergebnisse 1861 - 1890 von 2128

Weidezaun (Abitur BY 2019 Ph11-1 A2)

Aufgabe ( Übungsaufgaben )

Abb. 1 Aufbau des Modellversuchs zum WeidezaunIm Unterricht wird mithilfe nebenstehender Schaltung ein elektrischer Weidezaun simuliert, indem der…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Abb. 1 Aufbau des Modellversuchs zum WeidezaunIm Unterricht wird mithilfe nebenstehender Schaltung ein elektrischer Weidezaun simuliert, indem der…

Zur Aufgabe

Interferenz und Dipolstrahlung (Abitur BY 2019 Ph12-1 A1)

Aufgabe ( Übungsaufgaben )

Abb. 1 Momentaufnahme der abgestrahlten Wellenfronten (Wellentäler gestrichelt, Wellenberge durchgezogen)Zwei identische gleichphasig schwingende und…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Abb. 1 Momentaufnahme der abgestrahlten Wellenfronten (Wellentäler gestrichelt, Wellenberge durchgezogen)Zwei identische gleichphasig schwingende und…

Zur Aufgabe

COULOMB-Gesetz (Abitur BY 2019 Ph11-1 A1)

Aufgabe ( Übungsaufgaben )

Abb. 1 VersuchsaufbauIm Unterricht soll die Kraft zwischen zwei identischen geladenen Metallkugeln mit Durchmesser \(2{,}0\,\rm{cm}\) untersucht…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Abb. 1 VersuchsaufbauIm Unterricht soll die Kraft zwischen zwei identischen geladenen Metallkugeln mit Durchmesser \(2{,}0\,\rm{cm}\) untersucht…

Zur Aufgabe

Bauanleitung für einen BFO-Metalldetektor

Weblink

Das Video ist ein Makervideo für einen Metalldetektor nach dem BFO-Prinzip.

Zum externen Weblink
Weblink

Das Video ist ein Makervideo für einen Metalldetektor nach dem BFO-Prinzip.

Zum externen Weblink

Geschichte der Glühlampe

Geschichte
Geschichte

Leiter und Nichtleiter

Grundwissen

  • Materialien können grob in zwei Kategorien eingeteilt werden: Leiter (z.B. Metalle) und Nichtleiter (z.B. Kunststoffe).
  • Ob ein Material Strom gut oder schlecht leitet kannst du mit einer Testschaltung prüfen.
  • Je mehr Salz im Wasser gelöst ist, desto besser leitet Wasser Strom.
  • Die meisten Gase leiten Strom nicht.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Materialien können grob in zwei Kategorien eingeteilt werden: Leiter (z.B. Metalle) und Nichtleiter (z.B. Kunststoffe).
  • Ob ein Material Strom gut oder schlecht leitet kannst du mit einer Testschaltung prüfen.
  • Je mehr Salz im Wasser gelöst ist, desto besser leitet Wasser Strom.
  • Die meisten Gase leiten Strom nicht.

Zum Artikel Zu den Aufgaben

Funktionsprinzip von Leuchtstofflampen

Ausblick

  • In Leuchtstofflampen sorgt keine Glühwendel für Licht sondern Quecksilberatome werden zum Leuchten angeregt.
  • Quecksilber emittiert zum großen Teil UV-Licht, dass durch einen speziellen Leuchtstoff in sichtbares Licht umgewandelt wird.
  • Leuchtstofflampen können auch durch starke externe Felder zum Leuchten angeregt werden.

Zum Artikel
Ausblick

  • In Leuchtstofflampen sorgt keine Glühwendel für Licht sondern Quecksilberatome werden zum Leuchten angeregt.
  • Quecksilber emittiert zum großen Teil UV-Licht, dass durch einen speziellen Leuchtstoff in sichtbares Licht umgewandelt wird.
  • Leuchtstofflampen können auch durch starke externe Felder zum Leuchten angeregt werden.

Zum Artikel Zu den Aufgaben

Elektrische Ladung

Grundwissen

  • Die Einheit der elektrische Ladung, Symbol \(Q\), ist das Coulomb, Symbol \(\rm{C}\).
  • Ein Elektron besitzt die negative Elementarladung: \(q_{\rm{Elektron}}=-e = -1{,}6 \cdot 10^{-19}\,\rm{C}\).

Zum Artikel
Grundwissen

  • Die Einheit der elektrische Ladung, Symbol \(Q\), ist das Coulomb, Symbol \(\rm{C}\).
  • Ein Elektron besitzt die negative Elementarladung: \(q_{\rm{Elektron}}=-e = -1{,}6 \cdot 10^{-19}\,\rm{C}\).

Zum Artikel Zu den Aufgaben

Leistung bei der Parallelschaltung von Schaltern und Lampen

Aufgabe ( Einstiegsaufgaben )

Ein Stromkreis enthält eine elektrische Quelle mit \(\left| {{U_0}} \right| = 6{,}0\,{\rm{V}}\) und drei gleichartige Glühlampen mit der Aufschrift…

Zur Aufgabe
Aufgabe ( Einstiegsaufgaben )

Ein Stromkreis enthält eine elektrische Quelle mit \(\left| {{U_0}} \right| = 6{,}0\,{\rm{V}}\) und drei gleichartige Glühlampen mit der Aufschrift…

Zur Aufgabe

COULOMB-Feld - Elektrische Kraft (Simulation)

Download ( Simulation )

Die Simulation zeigt die elektrische Kraft auf eine (bewegliche) Punktladung im Raum um eine (ortsfeste) Punktladung (COULOMB-Kraft). Die Simulation…

Zum Download
Download ( Simulation )

Die Simulation zeigt die elektrische Kraft auf eine (bewegliche) Punktladung im Raum um eine (ortsfeste) Punktladung (COULOMB-Kraft). Die Simulation…

Zum Download

Homogenes elektrisches Feld - Elektrische Kraft (Simulation)

Download ( Simulation )

Die Simulation zeigt die elektrische Kraft auf eine Punktladung im Zwischenraum zweier entgegengesetzt geladener Platten. Die Simulation rechnet mit…

Zum Download
Download ( Simulation )

Die Simulation zeigt die elektrische Kraft auf eine Punktladung im Zwischenraum zweier entgegengesetzt geladener Platten. Die Simulation rechnet mit…

Zum Download

Elektrische Kraft (2 Spezialfälle)

Grundwissen

  • Die elektrische Kraft \(\vec F_{\rm{el}}\) auf eine Punktladung \(q\) im Zwischenraum zweier entgegengesetzt geladener paralleler Platten (Flächeninhalt \(A\), Ladung \(Q\)) ist senkrecht zu den Plattenoberflächen gerichtet. Der Betrag \(F_{\rm{el}}\) dieser elektrischen Kraft berechnet sich durch \(F_{\rm{el}} = \frac{1}{\varepsilon _0} \cdot \frac{\left| Q \right| \cdot \left|q \right|}{A}\).
  • Die elektrische Kraft \(\vec F_{\rm{C}}\) auf eine Punktladung \(q\) im Abstand \(r\) von einer ortsfesten Punktladung \(Q\) (COULOMB-Kraft) liegt auf der Verbindungsgeraden der beiden Ladungen. Der Betrag \(F_{\rm{C}}\) dieser COULOMB-Kraft berechnet sich durch \(F_{\rm{C}} = \frac{1}{4 \cdot \pi  \cdot \varepsilon _0} \cdot \frac{\left|Q\right| \cdot \left|q\right|}{{{r^2}}}\).
  • Dabei ist jeweils \(\varepsilon_0 = 8{,}854 \cdot {10^{-12}}\,\frac{\rm{A}\,\rm{s}}{\rm{V}\,\rm{m}}\) die elektrische Feldkonstante. 

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die elektrische Kraft \(\vec F_{\rm{el}}\) auf eine Punktladung \(q\) im Zwischenraum zweier entgegengesetzt geladener paralleler Platten (Flächeninhalt \(A\), Ladung \(Q\)) ist senkrecht zu den Plattenoberflächen gerichtet. Der Betrag \(F_{\rm{el}}\) dieser elektrischen Kraft berechnet sich durch \(F_{\rm{el}} = \frac{1}{\varepsilon _0} \cdot \frac{\left| Q \right| \cdot \left|q \right|}{A}\).
  • Die elektrische Kraft \(\vec F_{\rm{C}}\) auf eine Punktladung \(q\) im Abstand \(r\) von einer ortsfesten Punktladung \(Q\) (COULOMB-Kraft) liegt auf der Verbindungsgeraden der beiden Ladungen. Der Betrag \(F_{\rm{C}}\) dieser COULOMB-Kraft berechnet sich durch \(F_{\rm{C}} = \frac{1}{4 \cdot \pi  \cdot \varepsilon _0} \cdot \frac{\left|Q\right| \cdot \left|q\right|}{{{r^2}}}\).
  • Dabei ist jeweils \(\varepsilon_0 = 8{,}854 \cdot {10^{-12}}\,\frac{\rm{A}\,\rm{s}}{\rm{V}\,\rm{m}}\) die elektrische Feldkonstante. 

Zum Artikel Zu den Aufgaben

Homogenes elektrisches Feld - Elektrische Feldstärke (Simulation)

Download ( Simulation )

Die Simulation zeigt die elektrische Feldstärke (in Form von Feldstärkevektoren) im Zwischenraum zweier entgegengesetzt geladener Platten. Die…

Zum Download
Download ( Simulation )

Die Simulation zeigt die elektrische Feldstärke (in Form von Feldstärkevektoren) im Zwischenraum zweier entgegengesetzt geladener Platten. Die…

Zum Download

Elektrisches Feld und Feldliniendarstellung

Grundwissen

  • Im Raum um eine Ladung herrscht ein elektrisches Feld. Dieses elektrische Feld überträgt die Kraftwirkung dieser Ladung auf andere Ladungen.
  • Die elektrische Feldstärke ist definiert als der Quotient aus der elektrischen Kraft \({\vec F_{\rm{el}}}\) auf eine Probeladung und der Probeladung \(q\): \(\vec E = \frac{{{{\vec F}_{\rm{el}}}}}{q}\).
  • Für die elektrische Feldstärke \(\vec E\) im Raum um eine punktförmige Ladung \(Q\) gilt: Der Feldstärkevektor ist für eine positive Ladung radial von der Ladung weg und für eine negative Ladung radial zur Ladung hin orientiert, der Betrag ist umgekehrt proportional zum Quadrat des Abstands \(r\) und hat den Wert \(E = \frac{1}{4 \cdot \pi \cdot \varepsilon_0} \cdot \frac{\left|Q\right|}{r^2}\).
  • Die elektrische Feldstärke \(\vec E\) im Zwischenraum zweier entgegengesetzt geladener Platten (Flächeninhalt \(A\), Ladung \(Q\)) ist konstant (homogenes elektrisches Feld). Der Feldstärkevektor steht senkrecht zu den Plattenoberflächen, ist von der positiv zur negativ geladenen Platte orientiert und hat den Betrag \(E = \frac{1}{\varepsilon_0} \cdot \frac{\left|Q\right|}{A}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Im Raum um eine Ladung herrscht ein elektrisches Feld. Dieses elektrische Feld überträgt die Kraftwirkung dieser Ladung auf andere Ladungen.
  • Die elektrische Feldstärke ist definiert als der Quotient aus der elektrischen Kraft \({\vec F_{\rm{el}}}\) auf eine Probeladung und der Probeladung \(q\): \(\vec E = \frac{{{{\vec F}_{\rm{el}}}}}{q}\).
  • Für die elektrische Feldstärke \(\vec E\) im Raum um eine punktförmige Ladung \(Q\) gilt: Der Feldstärkevektor ist für eine positive Ladung radial von der Ladung weg und für eine negative Ladung radial zur Ladung hin orientiert, der Betrag ist umgekehrt proportional zum Quadrat des Abstands \(r\) und hat den Wert \(E = \frac{1}{4 \cdot \pi \cdot \varepsilon_0} \cdot \frac{\left|Q\right|}{r^2}\).
  • Die elektrische Feldstärke \(\vec E\) im Zwischenraum zweier entgegengesetzt geladener Platten (Flächeninhalt \(A\), Ladung \(Q\)) ist konstant (homogenes elektrisches Feld). Der Feldstärkevektor steht senkrecht zu den Plattenoberflächen, ist von der positiv zur negativ geladenen Platte orientiert und hat den Betrag \(E = \frac{1}{\varepsilon_0} \cdot \frac{\left|Q\right|}{A}\).

Zum Artikel Zu den Aufgaben

Quiz zum COULOMB-Gesetz

Aufgabe ( Quiz )
Aufgabe ( Quiz )

Kugeln einer Influenzmaschine

Aufgabe ( Übungsaufgaben )

Die Kugeln einer Influenzmaschine haben einen Durchmesser von \(2{,}00\,\rm{cm}\) und tragen die entgegengesetzte, aber betragsmäßig gleiche Ladung…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Die Kugeln einer Influenzmaschine haben einen Durchmesser von \(2{,}00\,\rm{cm}\) und tragen die entgegengesetzte, aber betragsmäßig gleiche Ladung…

Zur Aufgabe

Elektrische Kraft im radialsymmetrischen elektrischen Feld (COULOMB-Feld) - Formelumstellung

Aufgabe ( Einstiegsaufgaben )

a) Zwei kleine Kugeln sind \(50\,\rm{cm}\) voneinander entfernt. Der Durchmesser der Kugeln kann gegenüber…

Zur Aufgabe
Aufgabe ( Einstiegsaufgaben )

a) Zwei kleine Kugeln sind \(50\,\rm{cm}\) voneinander entfernt. Der Durchmesser der Kugeln kann gegenüber…

Zur Aufgabe

Schwingende Ladung (Abitur SL 1996 LK A1-3.1-3.4)

Aufgabe ( Übungsaufgaben )

Abb. 1 Skizze zur AufgabeDie beiden punktförmigen Ladungen an den Orten A und B sind ortsfest und haben den gleichen positiven Wert \(Q\). In der…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Abb. 1 Skizze zur AufgabeDie beiden punktförmigen Ladungen an den Orten A und B sind ortsfest und haben den gleichen positiven Wert \(Q\). In der…

Zur Aufgabe

Homogenes elektrisches Feld - Potenzial (Simulation)

Download ( Simulation )

Die Simulation zeigt das Potenzial im Zwischenraum zweier entgegengesetzt geladener Platten. Die Simulation rechnet mit dem (für beide Platten…

Zum Download
Download ( Simulation )

Die Simulation zeigt das Potenzial im Zwischenraum zweier entgegengesetzt geladener Platten. Die Simulation rechnet mit dem (für beide Platten…

Zum Download

Potenzial und Spannung im homogenen elektrischen Feld

Aufgabe ( Einstiegsaufgaben )

Abb. 1 Skizze zur AufgabeZwei parallel zueinander stehende Platten mit Flächeninhalt \(A = 0{,}1129\,\rm{m}^2\) und Plattenabstand \(d =…

Zur Aufgabe
Aufgabe ( Einstiegsaufgaben )

Abb. 1 Skizze zur AufgabeZwei parallel zueinander stehende Platten mit Flächeninhalt \(A = 0{,}1129\,\rm{m}^2\) und Plattenabstand \(d =…

Zur Aufgabe

Homogenes elektrisches Feld - Potenzielle Energie (Simulation)

Download ( Simulation )

Die Simulation zeigt die potenzielle Energie einer Punktladung (genauer des Systems Plattenladung-Punktladung) im Zwischenraum zweier entgegengesetzt…

Zum Download
Download ( Simulation )

Die Simulation zeigt die potenzielle Energie einer Punktladung (genauer des Systems Plattenladung-Punktladung) im Zwischenraum zweier entgegengesetzt…

Zum Download

Arbeit und potenzielle Energie im homogenen elektrischen Feld

Aufgabe ( Einstiegsaufgaben )

Abb. 1 Skizze zur AufgabeZwei parallel zueinander stehende Platten mit Flächeninhalt \(A = 0{,}1129\,\rm{m}^2\) und Plattenabstand \(d =…

Zur Aufgabe
Aufgabe ( Einstiegsaufgaben )

Abb. 1 Skizze zur AufgabeZwei parallel zueinander stehende Platten mit Flächeninhalt \(A = 0{,}1129\,\rm{m}^2\) und Plattenabstand \(d =…

Zur Aufgabe

Homogenes elektrisches Feld - Arbeit (Simulation)

Download ( Simulation )

Die Simulation zeigt die Arbeit an einer Punktladung (genauer am System Platten-Punktladung) beim Bewegen der Punktladung im Zwischenraum zweier…

Zum Download
Download ( Simulation )

Die Simulation zeigt die Arbeit an einer Punktladung (genauer am System Platten-Punktladung) beim Bewegen der Punktladung im Zwischenraum zweier…

Zum Download

Homogenes elektrisches Feld - Spannung (Simulation)

Download ( Simulation )

Die Simulation zeigt die Spannung zwischen zwei Punkten im Zwischenraum zweier entgegengesetzt geladener Platten. Die Simulation rechnet mit dem (für…

Zum Download
Download ( Simulation )

Die Simulation zeigt die Spannung zwischen zwei Punkten im Zwischenraum zweier entgegengesetzt geladener Platten. Die Simulation rechnet mit dem (für…

Zum Download

Homogenes elektrisches Feld

Grundwissen

  • Hat die elektrische Feldstärke \(\vec E\) in einem Raumgebiet immer die gleiche Richtung, die gleiche Orientierung und den gleichen Betrag, so sprechen wir von einem homogenen elektrischen Feld in diesem Raumgebiet.
  • Wichtigstes Beispiel für ein homogenes elektrisches Feld ist das Feld im Zwischenraum zweier entgegengesetzt geladener Platten.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Hat die elektrische Feldstärke \(\vec E\) in einem Raumgebiet immer die gleiche Richtung, die gleiche Orientierung und den gleichen Betrag, so sprechen wir von einem homogenen elektrischen Feld in diesem Raumgebiet.
  • Wichtigstes Beispiel für ein homogenes elektrisches Feld ist das Feld im Zwischenraum zweier entgegengesetzt geladener Platten.

Zum Artikel Zu den Aufgaben

Homogenes elektrisches Feld - Feldlinien (Simulation)

Download ( Simulation )

Die Simulation zeigt die Darstellung des elektrischen Feldes im Zwischenraum zweier entgegengesetzt geladener Platten durch Feldlinien. Die…

Zum Download
Download ( Simulation )

Die Simulation zeigt die Darstellung des elektrischen Feldes im Zwischenraum zweier entgegengesetzt geladener Platten durch Feldlinien. Die…

Zum Download

Homogenes elektrisches Feld - Äquipotenziallinien (Simulation)

Download ( Simulation )

Die Simulation zeigt die Darstellung des elektrischen Feldes im Zwischenraum zweier entgegengesetzt geladener Platten durch Äquipotenziallinien. Die…

Zum Download
Download ( Simulation )

Die Simulation zeigt die Darstellung des elektrischen Feldes im Zwischenraum zweier entgegengesetzt geladener Platten durch Äquipotenziallinien. Die…

Zum Download

Entgegengesetzt geladene Platten

Aufgabe ( Übungsaufgaben )

Zwei Kondensatorplatten mit einer Fläche von jeweils \(0{,}25\,{\rm{m}}^2\) stehen sich im Abstand von \(0{,}20\,\rm{mm}\) gegenüber. An die Platten…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Zwei Kondensatorplatten mit einer Fläche von jeweils \(0{,}25\,{\rm{m}}^2\) stehen sich im Abstand von \(0{,}20\,\rm{mm}\) gegenüber. An die Platten…

Zur Aufgabe

Ladung der Erde

Aufgabe ( Übungsaufgaben )

Messungen zeigen, dass die Erdkugel als ganzes negativ geladen ist. Die resultierende Feldstärke, die man an der Erdoberfläche misst, beträgt im…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Messungen zeigen, dass die Erdkugel als ganzes negativ geladen ist. Die resultierende Feldstärke, die man an der Erdoberfläche misst, beträgt im…

Zur Aufgabe

COULOMB-Feld - Elektrische Feldstärke (Simulation)

Download ( Simulation )

Die Simulation zeigt die elektrische Feldstärke im Raum um eine ortsfeste Punktladung. Die Simulation rechnet in einem Raumbereich mit den…

Zum Download
Download ( Simulation )

Die Simulation zeigt die elektrische Feldstärke im Raum um eine ortsfeste Punktladung. Die Simulation rechnet in einem Raumbereich mit den…

Zum Download