Direkt zum Inhalt
Suchergebnisse 1 - 30 von 144

20 Jahre LEIFIphysik: Physikunterricht zum Wettbewerb

Grundwissen

Der LEIFIphysik-Fotowettbewerb ist eine gute Gelegenheit, um über Physik in der Welt um uns herum zu sprechen und diese im Rahmen eines physikalischen Spaziergangs zu entdecken. Das geht auch direkt im Physikunterricht. Auf dieser Seite findet sich ein Vorschlag zum Ablauf.

Zum Artikel
Grundwissen

Der LEIFIphysik-Fotowettbewerb ist eine gute Gelegenheit, um über Physik in der Welt um uns herum zu sprechen und diese im Rahmen eines physikalischen Spaziergangs zu entdecken. Das geht auch direkt im Physikunterricht. Auf dieser Seite findet sich ein Vorschlag zum Ablauf.

Zum Artikel Zu den Aufgaben

Gültige Ziffern mit Zehnerpotenzen

Grundwissen

  • Manchmal ist die Angabe der Lösung mit der richtigen Anzahl der gültigen Ziffern nicht direkt möglich.
  • Die Umwandlung in eine größere Einheit ist eine Lösungsmöglichkeit.
  • Durch den Einsatz von Zehnerpotenzen kannst du die Anzahl der gültigen Ziffern immer richtig angeben.

Zum Artikel
Grundwissen

  • Manchmal ist die Angabe der Lösung mit der richtigen Anzahl der gültigen Ziffern nicht direkt möglich.
  • Die Umwandlung in eine größere Einheit ist eine Lösungsmöglichkeit.
  • Durch den Einsatz von Zehnerpotenzen kannst du die Anzahl der gültigen Ziffern immer richtig angeben.

Zum Artikel Zu den Aufgaben

Exponentialfunktionen auswerten

Grundwissen

  • Exponentialfunktionen haben die Form \(f(x)=a\cdot b^x\) bzw. mittels \(e\)-Funktion ausgedrückt \(f(x) = a \cdot e^{k \cdot x}\)
  • Aus Messwerten kannst du die zugrundeliegende Exponentialfunktion mittels exponentieller Regression ermitteln.
  • Bei Zerfallskurven, bei Absorptionskurven und bei Entladekurven von Kondensatoren handelt es sich um Exponentialfunktionen.

Zum Artikel
Grundwissen

  • Exponentialfunktionen haben die Form \(f(x)=a\cdot b^x\) bzw. mittels \(e\)-Funktion ausgedrückt \(f(x) = a \cdot e^{k \cdot x}\)
  • Aus Messwerten kannst du die zugrundeliegende Exponentialfunktion mittels exponentieller Regression ermitteln.
  • Bei Zerfallskurven, bei Absorptionskurven und bei Entladekurven von Kondensatoren handelt es sich um Exponentialfunktionen.

Zum Artikel Zu den Aufgaben

Zusammenfassen von Proportionalitäten

Grundwissen

  • Mehrere Proportionalitäten zu einer Größe kannst du zusammenfassen.
  • Sind z.B. die Größen \(a\) und \(b\) proportional zu \(y\), so ist auch \(a\cdot b\) proportional zu \(y\).
  • Umgekehrte Proportionalitäten kannst du ebenso zusammenfassen.

Zum Artikel
Grundwissen

  • Mehrere Proportionalitäten zu einer Größe kannst du zusammenfassen.
  • Sind z.B. die Größen \(a\) und \(b\) proportional zu \(y\), so ist auch \(a\cdot b\) proportional zu \(y\).
  • Umgekehrte Proportionalitäten kannst du ebenso zusammenfassen.

Zum Artikel Zu den Aufgaben

SI-Basisgrößen und -einheiten

Grundwissen
Grundwissen

Speicherung von Energie

Grundwissen
Grundwissen

Orientierung mit Hilfe des Polarsterns (Nordstern)

Grundwissen

  • Der Polarstern steht nahe des Himmelsnordpols und lässt sich daher zur Bestimmung der geographischen Nordrichtung nutzen
  • Die Höhe \(h\) des Polarsterns über dem Horizont ist gleich der geographischen Breite \(\varphi\) des Beobachters.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Der Polarstern steht nahe des Himmelsnordpols und lässt sich daher zur Bestimmung der geographischen Nordrichtung nutzen
  • Die Höhe \(h\) des Polarsterns über dem Horizont ist gleich der geographischen Breite \(\varphi\) des Beobachters.

Zum Artikel Zu den Aufgaben

Lösen von Gleichungen - Fortführung

Grundwissen
Grundwissen

Rechenaufgaben

Grundwissen

  • Bei Rechenaufgaben in der Physik hilft ein strukturiertes Vorgehen.
  • Notiere zuerst die gegebenen und gesuchten Größen und rechne jeweils in die Basiseinheit um.
  • Stelle die Formel zuerst allgemein nach der gesuchten Größe um und setze erst dann die gegebenen Größen ein.

Zum Artikel
Grundwissen

  • Bei Rechenaufgaben in der Physik hilft ein strukturiertes Vorgehen.
  • Notiere zuerst die gegebenen und gesuchten Größen und rechne jeweils in die Basiseinheit um.
  • Stelle die Formel zuerst allgemein nach der gesuchten Größe um und setze erst dann die gegebenen Größen ein.

Zum Artikel Zu den Aufgaben

Grundbegriffe der Energietechnik

Grundwissen
Grundwissen

Reversible und Irreversible Vorgänge

Grundwissen
Grundwissen

Einheiten der Energietechnik

Grundwissen
Grundwissen

Optische Geräte

Grundwissen

  • Wichtige optische Geräte sind Lupe, Fernrohr, Mikroskop und Fotoapparat.
  • Beim Fernrohr wird zwischen Kepler- und Galilei-Fernrohr unterschieden.
  • Häufig ist die Vergrößerung \(V\) eines optischen Gerätes von besonderem Interesse.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Wichtige optische Geräte sind Lupe, Fernrohr, Mikroskop und Fotoapparat.
  • Beim Fernrohr wird zwischen Kepler- und Galilei-Fernrohr unterschieden.
  • Häufig ist die Vergrößerung \(V\) eines optischen Gerätes von besonderem Interesse.

Zum Artikel Zu den Aufgaben

Ultraviolett

Grundwissen

  • Größenordnung der Wellenlänge: zwischen \(380\,{\rm nm}\) und \(1\,{\rm nm}\)
  • Größenordnung der Frequenz: von \(789\,{\rm THz}\) bis \(300\,{\rm PHz}\)
  • Anwendungen: Schwarzlichtlampen, Geldscheinprüfung, Härtung von Klebstoffen

Zum Artikel
Grundwissen

  • Größenordnung der Wellenlänge: zwischen \(380\,{\rm nm}\) und \(1\,{\rm nm}\)
  • Größenordnung der Frequenz: von \(789\,{\rm THz}\) bis \(300\,{\rm PHz}\)
  • Anwendungen: Schwarzlichtlampen, Geldscheinprüfung, Härtung von Klebstoffen

Zum Artikel Zu den Aufgaben

Röntgenstrahlung

Grundwissen

  • Größenordnung der Wellenlänge: zwischen \(1\,{\rm nm}\) und \(10\,{\rm pm}\)
  • Größenordnung der Frequenz: von \(3\cdot 10^{17}\,{\rm Hz}\) bis \(3\cdot 10^{19}\,{\rm Hz}\)
  • Anwendungen: Röntgengeräte, Computertomographen

Zum Artikel
Grundwissen

  • Größenordnung der Wellenlänge: zwischen \(1\,{\rm nm}\) und \(10\,{\rm pm}\)
  • Größenordnung der Frequenz: von \(3\cdot 10^{17}\,{\rm Hz}\) bis \(3\cdot 10^{19}\,{\rm Hz}\)
  • Anwendungen: Röntgengeräte, Computertomographen

Zum Artikel Zu den Aufgaben

Gammastrahlung

Grundwissen

  • Größenordnung der Wellenlänge: kleiner als \(10\,{\rm pm}\)
  • Größenordnung der Frequenz: größer als \(3\cdot 10^{19}\,{\rm Hz}\)
  • Auftreten: radioaktiver Zerfall, Umwandlungsreaktionen von Elementarteilchen

Zum Artikel
Grundwissen

  • Größenordnung der Wellenlänge: kleiner als \(10\,{\rm pm}\)
  • Größenordnung der Frequenz: größer als \(3\cdot 10^{19}\,{\rm Hz}\)
  • Auftreten: radioaktiver Zerfall, Umwandlungsreaktionen von Elementarteilchen

Zum Artikel Zu den Aufgaben

Entwicklung schwerer Sterne

Grundwissen

  • Massereiche Sterne der Hauptreihe kollabieren unter ihrer eigenen Gravitation, wenn im Kern kein Energiegewinn mittels Fusion mehr möglich ist.
  • Neutronensterne besitzen kleine Radien von etwas \(10\) bis \(13\,\rm{km}\) und eine extrem hohe Dichte.
  • Schnell rotierende Neutronensterne können gerichtete Radiostrahlung aussenden, die bei günstiger geometrischer Lage auf der Erde detektiert werden können. Solche Sterne nennt man Pulsare.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Massereiche Sterne der Hauptreihe kollabieren unter ihrer eigenen Gravitation, wenn im Kern kein Energiegewinn mittels Fusion mehr möglich ist.
  • Neutronensterne besitzen kleine Radien von etwas \(10\) bis \(13\,\rm{km}\) und eine extrem hohe Dichte.
  • Schnell rotierende Neutronensterne können gerichtete Radiostrahlung aussenden, die bei günstiger geometrischer Lage auf der Erde detektiert werden können. Solche Sterne nennt man Pulsare.

Zum Artikel Zu den Aufgaben

Dunkle Materie und Dunkle Energie

Grundwissen

  • Nur etwa 4,9% der im Universum enthaltenen Masse besteht aus den Standardteilchen der Elementarteilchenphysik
  • 26,8% bestehen aus Dunkler Materie, die zur Masse von Galaxien beiträgt und rein gravitativ wechselwirkt.
  • 68,3% bestehen aus sog. Dunkler Energie die mit negativem Druck einhergeht und bestrebt ist, den Raum auszudehnen.

Zum Artikel
Grundwissen

  • Nur etwa 4,9% der im Universum enthaltenen Masse besteht aus den Standardteilchen der Elementarteilchenphysik
  • 26,8% bestehen aus Dunkler Materie, die zur Masse von Galaxien beiträgt und rein gravitativ wechselwirkt.
  • 68,3% bestehen aus sog. Dunkler Energie die mit negativem Druck einhergeht und bestrebt ist, den Raum auszudehnen.

Zum Artikel Zu den Aufgaben

Kosmologie und Standardmodell

Grundwissen

  • Die Kosmologie beschäftigt sich mit dem derzeitigen Aufbau und der zeitlichen Entwicklung, also der Geschichte des Universums
  • Das sog. Standardmodell der Kosmologie ist die anerkannteste Theorie über die Entwicklung des Universums und geht von einem Urknall vor 13,8 Milliarden Jahren aus.

Zum Artikel
Grundwissen

  • Die Kosmologie beschäftigt sich mit dem derzeitigen Aufbau und der zeitlichen Entwicklung, also der Geschichte des Universums
  • Das sog. Standardmodell der Kosmologie ist die anerkannteste Theorie über die Entwicklung des Universums und geht von einem Urknall vor 13,8 Milliarden Jahren aus.

Zum Artikel Zu den Aufgaben

Elektromagnetisches Spektrum

Grundwissen

  • Das elektromagnetische Spektrum erstreckt sich über viele Größenordnungen hinweg.
  • Das sichtbare Licht ist nur ein kleiner Teil des elektromagnetischen Spektrums.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Das elektromagnetische Spektrum erstreckt sich über viele Größenordnungen hinweg.
  • Das sichtbare Licht ist nur ein kleiner Teil des elektromagnetischen Spektrums.

Zum Artikel Zu den Aufgaben

Sichtbares Licht

Grundwissen

  • Größenordnung der Wellenlänge: zwischen \(780\,{\rm nm}\) und \(380\,{\rm nm}\)
  • Größenordnung der Frequenz: von \(384\,{\rm THz}\) bis \(789\,{\rm THz}\)

Zum Artikel
Grundwissen

  • Größenordnung der Wellenlänge: zwischen \(780\,{\rm nm}\) und \(380\,{\rm nm}\)
  • Größenordnung der Frequenz: von \(384\,{\rm THz}\) bis \(789\,{\rm THz}\)

Zum Artikel Zu den Aufgaben

Infrarot

Grundwissen

  • Größenordnung der Wellenlänge: zwischen \(1\,{\rm mm}\) und \(780\,{\rm nm}\)
  • Größenordnung der Frequenz: von \(300\,{\rm GHz}\) bis \(385\,{\rm THz}\)
  • Anwendungen: Fernbedienungen, Temperaturmessung, Vegetationsbestimmung

Zum Artikel
Grundwissen

  • Größenordnung der Wellenlänge: zwischen \(1\,{\rm mm}\) und \(780\,{\rm nm}\)
  • Größenordnung der Frequenz: von \(300\,{\rm GHz}\) bis \(385\,{\rm THz}\)
  • Anwendungen: Fernbedienungen, Temperaturmessung, Vegetationsbestimmung

Zum Artikel Zu den Aufgaben

Mikrowellen

Grundwissen

  • Größenordnung der Wellenlänge: zwischen \(1\,{\rm m}\) und \(1\,{\rm mm}\)
  • Größenordnung der Frequenz: von \(300\,{\rm MHz}\) bis \(300\,{\rm GHz}\)
  • Anwendungen: Funk, Mikrowellenherd, Radar

Zum Artikel
Grundwissen

  • Größenordnung der Wellenlänge: zwischen \(1\,{\rm m}\) und \(1\,{\rm mm}\)
  • Größenordnung der Frequenz: von \(300\,{\rm MHz}\) bis \(300\,{\rm GHz}\)
  • Anwendungen: Funk, Mikrowellenherd, Radar

Zum Artikel Zu den Aufgaben

Energie im Gravitationsfeld

Grundwissen

  • Die Arbeit im Gravitationsfeld ist \(W =E_{\rm{pot,End}}-E_{\rm{pot,Anfang}}= - G \cdot m \cdot M \cdot \frac{1}{{{r_E}}} + G \cdot m \cdot M \cdot \frac{1}{{{r_A}}}\)
  • Im freien Weltall besitzen Körper keine potentielle Energie, es gilt: \(E_{\rm{pot,}\infty}=0\).
  • Allgemein gilt für die Fluchtgeschwindigkeit von einem Körper \(v_{\rm{Flucht}}=\sqrt {\frac{{2 \cdot G \cdot M}}{r}}\)
  • Die Fluchtgeschwindigkeit der Erde ist \(v_{\rm Flucht}= 11{,}2\,\rm{\frac{km}{s}}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Arbeit im Gravitationsfeld ist \(W =E_{\rm{pot,End}}-E_{\rm{pot,Anfang}}= - G \cdot m \cdot M \cdot \frac{1}{{{r_E}}} + G \cdot m \cdot M \cdot \frac{1}{{{r_A}}}\)
  • Im freien Weltall besitzen Körper keine potentielle Energie, es gilt: \(E_{\rm{pot,}\infty}=0\).
  • Allgemein gilt für die Fluchtgeschwindigkeit von einem Körper \(v_{\rm{Flucht}}=\sqrt {\frac{{2 \cdot G \cdot M}}{r}}\)
  • Die Fluchtgeschwindigkeit der Erde ist \(v_{\rm Flucht}= 11{,}2\,\rm{\frac{km}{s}}\)

Zum Artikel Zu den Aufgaben