Direkt zum Inhalt
Suchergebnisse 121 - 150 von 196

Energieaufnahme von Atomen durch (Resonanz-)Absorption von Photonen

Grundwissen

  • Atome können beim Aufeinandertreffen mit Photonen angeregt werden.
  • Die Energie des Photons muss aber exakt gleich der Energiedifferenz der verschiedenen Energiezustände sein: \({E_{{\rm{Ph}}}} = {E_m} - {E_n}\). Deshalb der Begriff "Resonanzabsorption".
  • Nach der Absorption ist das Photon komplett vernichtet.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Atome können beim Aufeinandertreffen mit Photonen angeregt werden.
  • Die Energie des Photons muss aber exakt gleich der Energiedifferenz der verschiedenen Energiezustände sein: \({E_{{\rm{Ph}}}} = {E_m} - {E_n}\). Deshalb der Begriff "Resonanzabsorption".
  • Nach der Absorption ist das Photon komplett vernichtet.

Zum Artikel Zu den Aufgaben

Energieaufnahme von Atomen durch Stoßanregung

Grundwissen

  • Atome können durch Stöße mit anderen Atomen oder Elektronen angeregt werden (Stoßanregung).
  • Je nach Energie des Teilchens, das mit einem Atom stößt, kann der Stoß elastisch, vollkommen unelastisch oder teilweise unelastisch sein.
  • Ist der Energieübertrag durch den Stoß größer als die Ionisationsenergie des Atoms, so wird das Atom ionisiert (Stoßionisation).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Atome können durch Stöße mit anderen Atomen oder Elektronen angeregt werden (Stoßanregung).
  • Je nach Energie des Teilchens, das mit einem Atom stößt, kann der Stoß elastisch, vollkommen unelastisch oder teilweise unelastisch sein.
  • Ist der Energieübertrag durch den Stoß größer als die Ionisationsenergie des Atoms, so wird das Atom ionisiert (Stoßionisation).

Zum Artikel Zu den Aufgaben

Energieabgabe von Atomen durch Emission von Photonen

Grundwissen

  • Angeregte Atome geben Energie durch die Emission von Photonen ab.
  • Diese Photon werden erst bei der Emission erzeugt, d.h. sie waren vorher nicht im Atom vorhanden.
  • Die Energie der emittierten Photonen ist immer gleich der Differenz der Energien zweier Energieniveaus des Atoms.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Angeregte Atome geben Energie durch die Emission von Photonen ab.
  • Diese Photon werden erst bei der Emission erzeugt, d.h. sie waren vorher nicht im Atom vorhanden.
  • Die Energie der emittierten Photonen ist immer gleich der Differenz der Energien zweier Energieniveaus des Atoms.

Zum Artikel Zu den Aufgaben

Energiezustände von Wasserstoff und verwandten Atomen

Grundwissen

  • Die Energiezustände des Wasserstoffatoms sind \({E_n} =  - 13{,}6\,{\rm{eV}} \cdot \frac{1}{{{n^2}}}\;;\;n \in \left\{ {1\;;\;2\;;\;3 \;;\;...} \right\}\)
  • Damit können auch die Wellenlängen \(\lambda\) der bei Wasserstoffübergängen möglichen Photonen berechnet werden.
  • Die Energiezustände von Einelektronensystemen von Atomen mit der Kernladungszahl \(Z\) sind \({E_n} =  - 13{,}6\,{\rm{eV}} \cdot \frac{Z^2}{{{n^2}}}\;;\;n \in \left\{ {1\;;\;2\;;\;3 \;;\;...} \right\}\)
  • Die Energiezustände von RYDBERG-Zustände aller Atomarten entsprechen den einfachen Verhältnissen beim Wasserstoffatom.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Energiezustände des Wasserstoffatoms sind \({E_n} =  - 13{,}6\,{\rm{eV}} \cdot \frac{1}{{{n^2}}}\;;\;n \in \left\{ {1\;;\;2\;;\;3 \;;\;...} \right\}\)
  • Damit können auch die Wellenlängen \(\lambda\) der bei Wasserstoffübergängen möglichen Photonen berechnet werden.
  • Die Energiezustände von Einelektronensystemen von Atomen mit der Kernladungszahl \(Z\) sind \({E_n} =  - 13{,}6\,{\rm{eV}} \cdot \frac{Z^2}{{{n^2}}}\;;\;n \in \left\{ {1\;;\;2\;;\;3 \;;\;...} \right\}\)
  • Die Energiezustände von RYDBERG-Zustände aller Atomarten entsprechen den einfachen Verhältnissen beim Wasserstoffatom.

Zum Artikel Zu den Aufgaben

Erzeugung von RÖNTGEN-Strahlung

Grundwissen

  • In RÖNTGEN-Röhren werden Elektronen stark beschleunigt und treffen dann auf eine Anode aus Metall.
  • Die Beschleunigungsspannungen betragen meist zwischen \(1\,\rm{kV}\) und \(100\,\rm{kV}\).
  • Beim Abbremsen der Elektronen im Anodenmaterial entsteht RÖNTGEN-Strahlung (Bremsstrahlung und Charakteristische Strahlung) und Wärme.
  • Die Wellenlänge von RÖNTGEN-Strahlung liegt etwa zwischen \(1\,\rm{nm}\) und \(1\,\rm{pm}\).

Zum Artikel
Grundwissen

  • In RÖNTGEN-Röhren werden Elektronen stark beschleunigt und treffen dann auf eine Anode aus Metall.
  • Die Beschleunigungsspannungen betragen meist zwischen \(1\,\rm{kV}\) und \(100\,\rm{kV}\).
  • Beim Abbremsen der Elektronen im Anodenmaterial entsteht RÖNTGEN-Strahlung (Bremsstrahlung und Charakteristische Strahlung) und Wärme.
  • Die Wellenlänge von RÖNTGEN-Strahlung liegt etwa zwischen \(1\,\rm{nm}\) und \(1\,\rm{pm}\).

Zum Artikel Zu den Aufgaben

Helium-Neon-Laser

Grundwissen

  • Neon-Atome sind das laseraktive Medium
  • Am Prozess sind vier Energieniveaus beteiligt - es ist ein "Vier-Niveau-System"
  • Helium-Neon-Laser emittiert rotes Licht der Wellenlänge \(\lambda=633\,\rm{nm}\)

Zum Artikel
Grundwissen

  • Neon-Atome sind das laseraktive Medium
  • Am Prozess sind vier Energieniveaus beteiligt - es ist ein "Vier-Niveau-System"
  • Helium-Neon-Laser emittiert rotes Licht der Wellenlänge \(\lambda=633\,\rm{nm}\)

Zum Artikel Zu den Aufgaben

Exotische Atome

Grundwissen

  • Bei exotischen Atomen ist mindestens eines der beteiligten Teilchen kein gewöhnliches Atom-Bestandteil.
  • Beispiele für exotische Atome sind Myonische Atome oder Antimaterie wie Antiwasserstoff.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei exotischen Atomen ist mindestens eines der beteiligten Teilchen kein gewöhnliches Atom-Bestandteil.
  • Beispiele für exotische Atome sind Myonische Atome oder Antimaterie wie Antiwasserstoff.

Zum Artikel Zu den Aufgaben

RYDBERG-Atome

Grundwissen

  • RYDBERG-Atome sind Atome in sehr hohen Anregungszuständen.
  • Die Theorie von Bohr kann sehr gut auf RYDBERG-Atome angewendet werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • RYDBERG-Atome sind Atome in sehr hohen Anregungszuständen.
  • Die Theorie von Bohr kann sehr gut auf RYDBERG-Atome angewendet werden.

Zum Artikel Zu den Aufgaben

Energiezustände im BOHRschen Atommodell

Grundwissen

  • Durch die Quantenbedingung von BOHR kann die Energie eines Atoms nur bestimmte Werte annehmen.
  • Die Energie, um Wasserstoff aus dem Grundzustand heraus zu ionisieren beträgt \(13{,}6\,\rm{eV}\) (Ionisierungsenergie).
  • Die Gesamtenergie eines Elektrons im Wasserstoffatom gilt \({E_{{\rm{ges}}{\rm{,n}}}} = - R_{\infty} \cdot h \cdot c \cdot \frac{1}{{{n^2}}}\), wobei \(R_{\infty}\) die Rydberg-Konstante ist.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Durch die Quantenbedingung von BOHR kann die Energie eines Atoms nur bestimmte Werte annehmen.
  • Die Energie, um Wasserstoff aus dem Grundzustand heraus zu ionisieren beträgt \(13{,}6\,\rm{eV}\) (Ionisierungsenergie).
  • Die Gesamtenergie eines Elektrons im Wasserstoffatom gilt \({E_{{\rm{ges}}{\rm{,n}}}} = - R_{\infty} \cdot h \cdot c \cdot \frac{1}{{{n^2}}}\), wobei \(R_{\infty}\) die Rydberg-Konstante ist.

Zum Artikel Zu den Aufgaben

Geschwindigkeitsaddition

Grundwissen

  • Ist \(u\) die Geschwindigkeit eines Körpers im System S und \(v\) die Geschwindigkeit des Systems S' in Bezug auf S und \(u'\) die Geschwindigkeit des Körpers im System S', dann gilt der Zusammenhang \(u = \frac{{u' + v}}{{1 + \frac{{u' \cdot v}}{{{c^2}}}}}\).

 

 

 

Zum Artikel
Grundwissen

  • Ist \(u\) die Geschwindigkeit eines Körpers im System S und \(v\) die Geschwindigkeit des Systems S' in Bezug auf S und \(u'\) die Geschwindigkeit des Körpers im System S', dann gilt der Zusammenhang \(u = \frac{{u' + v}}{{1 + \frac{{u' \cdot v}}{{{c^2}}}}}\).

 

 

 

Zum Artikel Zu den Aufgaben

Kosmologische Rotverschiebung

Grundwissen

  • In den Spektren weit entfernter Galaxien finden sich, wie beim Sonnenspektrum, verschiedene Absorptionslinien.
  • Die Absorptionslinien weit entfernter Galaxien sind deutlich stärker ins Rote verschoben.
  • Ursache für die kosmologische Rotverschiebung ist die Ausdehnung des Raumes selbst, nicht eine Relativbewegung der Galaxie im Vergleich zum Beobachter.
  • In der Astronomie wird die Rotverschiebung häufig durch die dimensionslose Größe \(z=\frac{\lambda_{\rm{beobachtet}}}{\lambda_0}-1\) angegeben.

Zum Artikel
Grundwissen

  • In den Spektren weit entfernter Galaxien finden sich, wie beim Sonnenspektrum, verschiedene Absorptionslinien.
  • Die Absorptionslinien weit entfernter Galaxien sind deutlich stärker ins Rote verschoben.
  • Ursache für die kosmologische Rotverschiebung ist die Ausdehnung des Raumes selbst, nicht eine Relativbewegung der Galaxie im Vergleich zum Beobachter.
  • In der Astronomie wird die Rotverschiebung häufig durch die dimensionslose Größe \(z=\frac{\lambda_{\rm{beobachtet}}}{\lambda_0}-1\) angegeben.

Zum Artikel Zu den Aufgaben

Quantenmechanische Systematisierung des Periodensystems

Grundwissen

  • Die Zustände der gebundenen Elektronen eines Atoms werden mit den Quantenzahlen beschrieben.
  • Es gibt vier unterschiedliche Quantenzahlen: Hauptquantenzahl \(n\), Nebenquantenzahl \(l\), magnetische Quantenzahl \(m\) und Spin-Quantenzahl \(s\).
  • Das PAULI-Prinzip besagt, dass in einem Atom niemals zwei Elektronen in allen vier Quantenzahlen übereinstimmen können.

Zum Artikel
Grundwissen

  • Die Zustände der gebundenen Elektronen eines Atoms werden mit den Quantenzahlen beschrieben.
  • Es gibt vier unterschiedliche Quantenzahlen: Hauptquantenzahl \(n\), Nebenquantenzahl \(l\), magnetische Quantenzahl \(m\) und Spin-Quantenzahl \(s\).
  • Das PAULI-Prinzip besagt, dass in einem Atom niemals zwei Elektronen in allen vier Quantenzahlen übereinstimmen können.

Zum Artikel Zu den Aufgaben

Atomdurchmesser aus dem Ölfleckversuch

Grundwissen

  • Beim Ölfleckversuch wird aus einer makroskopischen Beobachtung auf eine mikroskopische Eigenschaft geschlossen.
  • Der Durchmesser eines Atoms liegt in der Größenordnung von \(10^{-10}\,\rm{m}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Beim Ölfleckversuch wird aus einer makroskopischen Beobachtung auf eine mikroskopische Eigenschaft geschlossen.
  • Der Durchmesser eines Atoms liegt in der Größenordnung von \(10^{-10}\,\rm{m}\).

Zum Artikel Zu den Aufgaben

Kurze Einführung in die Geschichte des Maßes

Weblink

Prof. André Bresges, Professor für Physik an der Universität Köln, gibt einen kurzen Einblick in die Geschichte des Maßes in der katholischen Kirche und leitet einen kleinen Selbstversuch zum Thema Messen in der Physik an.

Zur Übersicht Zum externen Weblink
Weblink

Prof. André Bresges, Professor für Physik an der Universität Köln, gibt einen kurzen Einblick in die Geschichte des Maßes in der katholischen Kirche und leitet einen kleinen Selbstversuch zum Thema Messen in der Physik an.

Zur Übersicht Zum externen Weblink

Video zu den Chladnischen Klangfiguren

Weblink

Dieses Video zeigt Chladnische Klangfiguren, die bei der Anregung einer mit Sand bestreuten Metallplatte durch einen Geigenbogen entstehen. Das Video wurde von der Ecole Science als Open Educational Resource (OER) veröffentlicht.

Zur Übersicht Zum externen Weblink
Weblink

Dieses Video zeigt Chladnische Klangfiguren, die bei der Anregung einer mit Sand bestreuten Metallplatte durch einen Geigenbogen entstehen. Das Video wurde von der Ecole Science als Open Educational Resource (OER) veröffentlicht.

Zur Übersicht Zum externen Weblink

Flexible Simulation von Sonne und Erde

Weblink

Die Webseite bietet eine flexibel nutzbare Simulation von Sonne und Erde, anhand derer sehr gut die Jahreszeiten, die unterschiedlichen Tageslängen und der Einfluss der Position auf der Erde auf diese Phänomene gezeigt und anschaulich erklärt werden können. Alles vollständig im Browser - keine Installation notwendig.

Zur Übersicht Zum externen Weblink
Weblink

Die Webseite bietet eine flexibel nutzbare Simulation von Sonne und Erde, anhand derer sehr gut die Jahreszeiten, die unterschiedlichen Tageslängen und der Einfluss der Position auf der Erde auf diese Phänomene gezeigt und anschaulich erklärt werden können. Alles vollständig im Browser - keine Installation notwendig.

Zur Übersicht Zum externen Weblink

Video zu den Mondphasen

Weblink

Dieses Video illustriert die Mondphasen mithilfe einer Lichtquelle und einer Holzkugel, und zeigt dabei sowohl die Sicht von der Erde, als auch eine Draufsicht auf das gesamte Sonnensystem. Das Video wurde von der Ecole Science als Open Educational Resource (OER) veröffentlicht.

Zur Übersicht Zum externen Weblink
Weblink

Dieses Video illustriert die Mondphasen mithilfe einer Lichtquelle und einer Holzkugel, und zeigt dabei sowohl die Sicht von der Erde, als auch eine Draufsicht auf das gesamte Sonnensystem. Das Video wurde von der Ecole Science als Open Educational Resource (OER) veröffentlicht.

Zur Übersicht Zum externen Weblink

Videoanleitung zu Experimenten zur Wärmeleitung

Weblink

Dieses Video zeigt und erklärt einige Experimente zum Thema Wärmeleitung und -kapazität. Die Experimente können Physikunterricht aber auch im Homeschooling mit Haushaltgegenständen leicht reproduziert werden. Das Video stammt von Prof. André Bresges, Professor für Physik an der Universität Köln.

Zur Übersicht Zum externen Weblink
Weblink

Dieses Video zeigt und erklärt einige Experimente zum Thema Wärmeleitung und -kapazität. Die Experimente können Physikunterricht aber auch im Homeschooling mit Haushaltgegenständen leicht reproduziert werden. Das Video stammt von Prof. André Bresges, Professor für Physik an der Universität Köln.

Zur Übersicht Zum externen Weblink

Lernmodul des DLR_School_Lab zum Thema Erde, Sonne und Mond

Weblink

In diesem Lernmodul gehts rund. Das DLR_School_Lab erklärt hier, warum alle Himmelskörper rotieren und Planeten und Sterne kugelförmig sind. Ihr seht spannende Animationen, Videos und Bilder. Viel Spaß beim Stöbern!

Zur Übersicht Zum externen Weblink
Weblink

In diesem Lernmodul gehts rund. Das DLR_School_Lab erklärt hier, warum alle Himmelskörper rotieren und Planeten und Sterne kugelförmig sind. Ihr seht spannende Animationen, Videos und Bilder. Viel Spaß beim Stöbern!

Zur Übersicht Zum externen Weblink

Lernmodul des DLR_School_Lab zum Thema Erde, Sonne und Mond

Weblink

In diesem Lernmodul gehts rund. Das DLR_School_Lab erklärt hier, warum alle Himmelskörper rotieren und Planeten und Sterne kugelförmig sind. Ihr seht spannende Animationen, Videos und Bilder. Viel Spaß beim Stöbern!

Zur Übersicht Zum externen Weblink
Weblink

In diesem Lernmodul gehts rund. Das DLR_School_Lab erklärt hier, warum alle Himmelskörper rotieren und Planeten und Sterne kugelförmig sind. Ihr seht spannende Animationen, Videos und Bilder. Viel Spaß beim Stöbern!

Zur Übersicht Zum externen Weblink

Sonne, Erde, Mond in deinem Zimmer!

Weblink

Dieses Science-at-home Video von DLR_next zeigt euch viele Mitmach-Experimente zum Sonnensystem. Ihr lernt wie ihr die Kugelform der Erde nachweisen könnt und lernt im Versuch des Foucaultschen Pendels die Erddrehung zu zeigen. Viel Spaß beim Nachmachen!

Zur Übersicht Zum externen Weblink
Weblink

Dieses Science-at-home Video von DLR_next zeigt euch viele Mitmach-Experimente zum Sonnensystem. Ihr lernt wie ihr die Kugelform der Erde nachweisen könnt und lernt im Versuch des Foucaultschen Pendels die Erddrehung zu zeigen. Viel Spaß beim Nachmachen!

Zur Übersicht Zum externen Weblink

Eine virtuelle Reise ins All

Weblink

In dieser Episode des DLR_School_Lab TV könnt ihr an einer virtuellen Reise zur Internationalen Raumstation (ISS) teilnehmen und euch alle Module und Experimente anschauen. Danach geht es weiter auf den Mond und in Richtung des Mars und anderer Planeten. Viel Spaß!

Zur Übersicht Zum externen Weblink
Weblink

In dieser Episode des DLR_School_Lab TV könnt ihr an einer virtuellen Reise zur Internationalen Raumstation (ISS) teilnehmen und euch alle Module und Experimente anschauen. Danach geht es weiter auf den Mond und in Richtung des Mars und anderer Planeten. Viel Spaß!

Zur Übersicht Zum externen Weblink

Video über die Ausbildung zum/zur Astronaut*in

Weblink

In dieser Episode des DLR_School_Lab TV zeigt euch Tobi, wie die Ausbildung zum/zur Astronaut*in abläuft und welche Prüfungen und Tests abgelegt werden müssen. Außerdem seht ihr einige Experimente zur Schwerelosigkeit und zum Vakuum und eine Liveschalte zur ISS. Viel Spaß!

Zur Übersicht Zum externen Weblink
Weblink

In dieser Episode des DLR_School_Lab TV zeigt euch Tobi, wie die Ausbildung zum/zur Astronaut*in abläuft und welche Prüfungen und Tests abgelegt werden müssen. Außerdem seht ihr einige Experimente zur Schwerelosigkeit und zum Vakuum und eine Liveschalte zur ISS. Viel Spaß!

Zur Übersicht Zum externen Weblink

Online-Vortrag über Raketenantriebe und Exoplaneten

Weblink

In diesem Vortrag von Professor Tolan im DLR_School_Lab erfahrt ihr, wie Raketen fliegen und nehmt teil an einer Reise zu fernen Planeten außerhalb unseres Sonnensystems. Viel Spaß!

Zur Übersicht Zum externen Weblink
Weblink

In diesem Vortrag von Professor Tolan im DLR_School_Lab erfahrt ihr, wie Raketen fliegen und nehmt teil an einer Reise zu fernen Planeten außerhalb unseres Sonnensystems. Viel Spaß!

Zur Übersicht Zum externen Weblink

Trainingseinheiten für eine Reise zum Mars

Weblink

Diese kleinen Experimente und Spiele zeigen dir, wie sich Astronaut*innen auf einen Flug zum Mars vorbereiten und wie sie sich während des Fluges fit halten und auf die Aufgaben vorbereiten, die sie auf dem Mars erwarten. Viel Spaß beim Mitmachen!

Zur Übersicht Zum externen Weblink
Weblink

Diese kleinen Experimente und Spiele zeigen dir, wie sich Astronaut*innen auf einen Flug zum Mars vorbereiten und wie sie sich während des Fluges fit halten und auf die Aufgaben vorbereiten, die sie auf dem Mars erwarten. Viel Spaß beim Mitmachen!

Zur Übersicht Zum externen Weblink

Vorlesung zum Urknall und der Expansion des Universums von Harald Lesch

Weblink

In diesem ersten Vortrag der Vortragsreihe "Kosmologisch" redet Professor Harald Lesch über die Ausdehnung des Universum, den Urknall und weitere kosmologische Phänomene. Viel Spaß beim Zuschauen und Staunen!

Zur Übersicht Zum externen Weblink
Weblink

In diesem ersten Vortrag der Vortragsreihe "Kosmologisch" redet Professor Harald Lesch über die Ausdehnung des Universum, den Urknall und weitere kosmologische Phänomene. Viel Spaß beim Zuschauen und Staunen!

Zur Übersicht Zum externen Weblink

Beschreibung des Kometen Halley

Weblink

Geschichtliche Abriss zum Kometen Halley
Bahnmechanik (Aphel, Perihel, Umlaufgeschwindigkeit)
Sichtbarkeit

Zur Übersicht Zum externen Weblink
Weblink

Geschichtliche Abriss zum Kometen Halley
Bahnmechanik (Aphel, Perihel, Umlaufgeschwindigkeit)
Sichtbarkeit

Zur Übersicht Zum externen Weblink

Sammlung interaktiver Experimente zum Franck-Hertz-Versuch

Weblink

In dieser Sammlung an interaktiven Bildschirmexperimenten (IBE) könnt ihr den Franck-Hertz-Versuch selbst und interaktiv durchführen. In verschiedenen Experimenten und Messaufbauten könnt ihr von zuhause den Versuch sowohl mit Quecksilber als auch mit Neon durchführen und auswerten.
Zwischen den Experimenten könnt ihr durch Anklicken der Themen oder mit den Pfeilen unten rechts und links auf der Seite navigieren. Diese Experimente stammen von der AG Didaktik der Physik der Universität Berlin.

Zum externen Weblink
Weblink

In dieser Sammlung an interaktiven Bildschirmexperimenten (IBE) könnt ihr den Franck-Hertz-Versuch selbst und interaktiv durchführen. In verschiedenen Experimenten und Messaufbauten könnt ihr von zuhause den Versuch sowohl mit Quecksilber als auch mit Neon durchführen und auswerten.
Zwischen den Experimenten könnt ihr durch Anklicken der Themen oder mit den Pfeilen unten rechts und links auf der Seite navigieren. Diese Experimente stammen von der AG Didaktik der Physik der Universität Berlin.

Zum externen Weblink

Sammlung interaktiver Experimente zur Röntgenstrahlung

Weblink

Diese Sammlung an interaktiven Bildschirmexperimenten (IBE) behandelt das Thema der Röntgenstrahlung. Ihr lernt den Aufbau und die Funktionsweise eines Röntgengeräts kennen, untersucht das Modellexperiment der Bragg-Reflexion und könnt zentrale Experimente, wie die Bestimmung der Planckkonstante mit dem Röntgengerät interaktiv durchführen.
Zwischen den Experimenten könnt ihr durch Anklicken der Themen oder mit den Pfeilen unten rechts und links auf der Seite navigieren. Diese Experimente stammen von der AG Didaktik der Physik der Universität Berlin.

Zum externen Weblink
Weblink

Diese Sammlung an interaktiven Bildschirmexperimenten (IBE) behandelt das Thema der Röntgenstrahlung. Ihr lernt den Aufbau und die Funktionsweise eines Röntgengeräts kennen, untersucht das Modellexperiment der Bragg-Reflexion und könnt zentrale Experimente, wie die Bestimmung der Planckkonstante mit dem Röntgengerät interaktiv durchführen.
Zwischen den Experimenten könnt ihr durch Anklicken der Themen oder mit den Pfeilen unten rechts und links auf der Seite navigieren. Diese Experimente stammen von der AG Didaktik der Physik der Universität Berlin.

Zum externen Weblink

Video zum Linienspektrum von Argon

Weblink

Dieses Video zeigt ein Experiment zur Beobachtung des Linienspektrums einer Argon-Gasentladungslampe. Das Video wurde von der Ecole Science als Open Educational Resource (OER) veröffentlicht.

Zum externen Weblink
Weblink

Dieses Video zeigt ein Experiment zur Beobachtung des Linienspektrums einer Argon-Gasentladungslampe. Das Video wurde von der Ecole Science als Open Educational Resource (OER) veröffentlicht.

Zum externen Weblink