Direkt zum Inhalt
Suchergebnisse 151 - 180 von 246

Biologische Strahlenwirkung

Grundwissen

  • Man muss unterscheiden, ob die Bestrahlung von außen erfolgt oder vom Inneren des Körpers ausgeht.
  • \(\alpha\)- und \(\beta\)-Strahlung sind besonders gefährlich, wenn ihre Quellen durch Luft oder Nahrung in den Körper aufgenommen wurden.
  • Man unterscheidet stochastische und deterministische Strahlenschäden.

Zum Artikel
Grundwissen

  • Man muss unterscheiden, ob die Bestrahlung von außen erfolgt oder vom Inneren des Körpers ausgeht.
  • \(\alpha\)- und \(\beta\)-Strahlung sind besonders gefährlich, wenn ihre Quellen durch Luft oder Nahrung in den Körper aufgenommen wurden.
  • Man unterscheidet stochastische und deterministische Strahlenschäden.

Zum Artikel Zu den Aufgaben

Dosimetrie und Dosiseinheiten

Grundwissen

Zur Beschreibung der biologischen Wirkung von ionisierender Strahlung führt man den Begriff der Dosis ein. Dabei unterscheidet man verschiedene Dosisarten.

  • Die Energiedosis \(D\), die ein Körper durch ionisierende Strahlung erhält, ist der Quotient aus der von dem Körper absorbierten Strahlungsenergie \(E\) und der Masse \(m\) des Körpers: \(D=\frac{E}{m}\). Die Energiedosis ist Grundlage der Dosimetrie im Strahlenschutz.
  • Die Ionendosis \(J\), die ein Körper durch ionisierende Strahlung erhält, ist der Quotient aus der durch Ionisation in dem Körper freiwerdenen elektrischen Ladung \(Q\) gleichen Vorzeichens und der Masse \(m\) des Körpers: \(J=\frac{Q}{m}\).
  • Die Äquivalentdosis \(H\), die ein Körper durch eine Energiedosis einer bestimmten Strahlung erhält, ist das Produkt aus der Energiedosis \(D\) und dem Strahlungswichtungsfaktor \(w_{\rm{R}}\) der Strahlung: \(H=w_{\rm{R}} \cdot D\).
  • Die effektive Dosis \(E\), die ein Organ/Gewebe durch eine Äquivalentdosis erhält, ist das Produkt aus der Äquivalentdosis \(H\) und dem Gewebewichtungsfaktor \(w_{\rm{T}}\) des absorbierenden Organs/Gewebes: \(E=w_{\rm{T}} \cdot H\).

Zum Artikel Zu den Aufgaben
Grundwissen

Zur Beschreibung der biologischen Wirkung von ionisierender Strahlung führt man den Begriff der Dosis ein. Dabei unterscheidet man verschiedene Dosisarten.

  • Die Energiedosis \(D\), die ein Körper durch ionisierende Strahlung erhält, ist der Quotient aus der von dem Körper absorbierten Strahlungsenergie \(E\) und der Masse \(m\) des Körpers: \(D=\frac{E}{m}\). Die Energiedosis ist Grundlage der Dosimetrie im Strahlenschutz.
  • Die Ionendosis \(J\), die ein Körper durch ionisierende Strahlung erhält, ist der Quotient aus der durch Ionisation in dem Körper freiwerdenen elektrischen Ladung \(Q\) gleichen Vorzeichens und der Masse \(m\) des Körpers: \(J=\frac{Q}{m}\).
  • Die Äquivalentdosis \(H\), die ein Körper durch eine Energiedosis einer bestimmten Strahlung erhält, ist das Produkt aus der Energiedosis \(D\) und dem Strahlungswichtungsfaktor \(w_{\rm{R}}\) der Strahlung: \(H=w_{\rm{R}} \cdot D\).
  • Die effektive Dosis \(E\), die ein Organ/Gewebe durch eine Äquivalentdosis erhält, ist das Produkt aus der Äquivalentdosis \(H\) und dem Gewebewichtungsfaktor \(w_{\rm{T}}\) des absorbierenden Organs/Gewebes: \(E=w_{\rm{T}} \cdot H\).

Zum Artikel Zu den Aufgaben

FEYNMAN-Diagramme

Grundwissen

  • FEYNMAN-Diagramme sind schematische Zeit-Ort-Diagramme von Teilchen (nicht die Bahnkurven) und bieten eine übersichtliche Darstellung von Wechselwirkungsprozessen.
  • Oft haben die Diagramme äußere Linien, welche Materieteilchen darstellen und innere Linien, die Botenteilchen darstellen.
  • Wechselwirkungspunkte, an denen Linien zusammentreffen nennt man Vertices (Singular: Vertex).

Zum Artikel Zu den Aufgaben
Grundwissen

  • FEYNMAN-Diagramme sind schematische Zeit-Ort-Diagramme von Teilchen (nicht die Bahnkurven) und bieten eine übersichtliche Darstellung von Wechselwirkungsprozessen.
  • Oft haben die Diagramme äußere Linien, welche Materieteilchen darstellen und innere Linien, die Botenteilchen darstellen.
  • Wechselwirkungspunkte, an denen Linien zusammentreffen nennt man Vertices (Singular: Vertex).

Zum Artikel Zu den Aufgaben

Teilchenspuren (CK-12-Simulation)

Versuche

  • Teilchenspuren von verschiedenen Teilchen im Magnetfeld untersuchen.
  • Verschiedene Teilchen aufgrund ihrer Spuren im Magnetfeld unterscheiden.
  • Notwendigkeit der relativistischen Korrektur verdeutlichen.

Zum Artikel
Versuche

  • Teilchenspuren von verschiedenen Teilchen im Magnetfeld untersuchen.
  • Verschiedene Teilchen aufgrund ihrer Spuren im Magnetfeld unterscheiden.
  • Notwendigkeit der relativistischen Korrektur verdeutlichen.

Zum Artikel Zu den Aufgaben

Aufbau von Atomkernen

Grundwissen

  • Atomkerne bestehen aus Nukleonen. Dies sind entweder die elektrisch positiven Protonen und elektrische neutralen Neutronen.
  • Die Kernladungs- oder Ordnungszahl \(Z\) gibt die Zahl der Protonen in einem Atomkern an und bestimmt, um welches Element es sich handelt.
  • Jedes Element hat seine feste Kernladungszahl \(Z\), kann aber mehrere Isotope mit unterschiedlicher Neutronenzahlen \(N\) besitzen.
  • Die Nukleonen- oder Massenzahl \(A=Z+N\) gibt die (ungefähre) Masse eines Atomkerns bzw. des ganzen Atoms in der Maßeinheit \(\rm{u}\) an.
  • Zur eindeutigen Identifikation von Atomkernen nutzt man die Schreibweise\[_Z^A{\rm{X }} \buildrel \wedge \over = \;_{{\rm{Ordnungszahl}}}^{{\rm{Massenzahl}}}{\rm{Elementsymbol}},\;{\rm{alsoz}}.{\rm{B}}.\;_{\rm{6}}^{{\rm{14}}}{\rm{C}}\]

Zum Artikel Zu den Aufgaben
Grundwissen

  • Atomkerne bestehen aus Nukleonen. Dies sind entweder die elektrisch positiven Protonen und elektrische neutralen Neutronen.
  • Die Kernladungs- oder Ordnungszahl \(Z\) gibt die Zahl der Protonen in einem Atomkern an und bestimmt, um welches Element es sich handelt.
  • Jedes Element hat seine feste Kernladungszahl \(Z\), kann aber mehrere Isotope mit unterschiedlicher Neutronenzahlen \(N\) besitzen.
  • Die Nukleonen- oder Massenzahl \(A=Z+N\) gibt die (ungefähre) Masse eines Atomkerns bzw. des ganzen Atoms in der Maßeinheit \(\rm{u}\) an.
  • Zur eindeutigen Identifikation von Atomkernen nutzt man die Schreibweise\[_Z^A{\rm{X }} \buildrel \wedge \over = \;_{{\rm{Ordnungszahl}}}^{{\rm{Massenzahl}}}{\rm{Elementsymbol}},\;{\rm{alsoz}}.{\rm{B}}.\;_{\rm{6}}^{{\rm{14}}}{\rm{C}}\]

Zum Artikel Zu den Aufgaben

Nuklidkarte stabiler Kerne

Grundwissen

  • Verschiedene Atomkerne werden häufig in einer \(N\)-\(Z\)-Nuklidkarte dargestellt.
  • Unterschiedliche Elemente stehen jeweils in verschiedenen Zeilen, Isotope des gleichen Elementes jeweils in der gleichen Zeile.
  • Kleine, leichte Kerne besitzen ungefähr genau so viele Protonen wie Neutronen, bei großen, schweren Kernen ist die Zahl der Neutronen deutlich größer als die der Protonen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Verschiedene Atomkerne werden häufig in einer \(N\)-\(Z\)-Nuklidkarte dargestellt.
  • Unterschiedliche Elemente stehen jeweils in verschiedenen Zeilen, Isotope des gleichen Elementes jeweils in der gleichen Zeile.
  • Kleine, leichte Kerne besitzen ungefähr genau so viele Protonen wie Neutronen, bei großen, schweren Kernen ist die Zahl der Neutronen deutlich größer als die der Protonen.

Zum Artikel Zu den Aufgaben

Absolute Temperatur

Grundwissen

  • Der absolute Nullpunkt der Temperatur liegt bei \(\vartheta=-273{,}15\,^\circ{\rm C}\).
  • Die Kelvin-Skala hat ihren Nullpunkt am absoluten Nullpunkt. Eine Temperatur von \(\vartheta=-273,15\,^\circ{\rm C}\) entspricht \(0\,{\rm K}\).
  • Kelvin-Temperaturen werden mit \(T\) symbolisiert und die Einheit Kelvin wird mit \({\rm K}\) abgekürzt.
  • Temperaturdifferenzen \(\Delta T\) werden in der Regel ebenfalls in \(\rm {K}\) angegeben.

Zum Artikel
Grundwissen

  • Der absolute Nullpunkt der Temperatur liegt bei \(\vartheta=-273{,}15\,^\circ{\rm C}\).
  • Die Kelvin-Skala hat ihren Nullpunkt am absoluten Nullpunkt. Eine Temperatur von \(\vartheta=-273,15\,^\circ{\rm C}\) entspricht \(0\,{\rm K}\).
  • Kelvin-Temperaturen werden mit \(T\) symbolisiert und die Einheit Kelvin wird mit \({\rm K}\) abgekürzt.
  • Temperaturdifferenzen \(\Delta T\) werden in der Regel ebenfalls in \(\rm {K}\) angegeben.

Zum Artikel Zu den Aufgaben

Wärmestrahlung (Temperaturstrahlung)

Grundwissen

  • Wärmestrahlung geht in der Regel von jedem Körper aus.
  • Je wärmer ein Körper ist, desto intensiver ist die Wärmestrahlung, die von ihm ausgeht.
  • Wärmestrahlung benötigt kein Medium um sich auszubreiten.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Wärmestrahlung geht in der Regel von jedem Körper aus.
  • Je wärmer ein Körper ist, desto intensiver ist die Wärmestrahlung, die von ihm ausgeht.
  • Wärmestrahlung benötigt kein Medium um sich auszubreiten.

Zum Artikel Zu den Aufgaben

Überblick über Wärmekraftmaschinen

Grundwissen

  • Wärmekraftmaschinen erleichtern uns an vielen Stellen im Alltag das Leben.
  • Die Dampfmaschine war die erste wichtige Wärmekraftmaschine.
  • Der Wirkungsgrad von Wärmekraftmaschinen ist begrenzt.

Zum Artikel
Grundwissen

  • Wärmekraftmaschinen erleichtern uns an vielen Stellen im Alltag das Leben.
  • Die Dampfmaschine war die erste wichtige Wärmekraftmaschine.
  • Der Wirkungsgrad von Wärmekraftmaschinen ist begrenzt.

Zum Artikel Zu den Aufgaben

Allgemeines Gasgesetz

Grundwissen

  • Das Gesetz von BOYLE-MARIOTTE und das Gesetz von GAY-LUSSAC können zur allgemeinen Gasgleichung zusammengefasst werden.
  • Die allgemeine Gasgleichung besagt: \(\frac{{p \cdot V}}{T}\;{\rm{ist}}\;{\rm{konstant}}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Das Gesetz von BOYLE-MARIOTTE und das Gesetz von GAY-LUSSAC können zur allgemeinen Gasgleichung zusammengefasst werden.
  • Die allgemeine Gasgleichung besagt: \(\frac{{p \cdot V}}{T}\;{\rm{ist}}\;{\rm{konstant}}\)

Zum Artikel Zu den Aufgaben

Änderung der inneren Energie

Grundwissen

  • Eine Änderung der inneren Energie \(\Delta E_{\rm i}\) kann durch Verrichtung von Arbeit an einem Körper oder durch Übertragung von Wärme auf einen Körper erfolgen.
  • Die Änderung der innere Energie \(\Delta E_{\rm i}\) ist proportional zur Temperaturänderung \(\Delta \vartheta\) und zur Masse \(m\) .
  • Mathematisch wird der Zusammenhang beschrieben durch \(\Delta E_{\rm i}= c \cdot m\cdot \Delta \vartheta\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Eine Änderung der inneren Energie \(\Delta E_{\rm i}\) kann durch Verrichtung von Arbeit an einem Körper oder durch Übertragung von Wärme auf einen Körper erfolgen.
  • Die Änderung der innere Energie \(\Delta E_{\rm i}\) ist proportional zur Temperaturänderung \(\Delta \vartheta\) und zur Masse \(m\) .
  • Mathematisch wird der Zusammenhang beschrieben durch \(\Delta E_{\rm i}= c \cdot m\cdot \Delta \vartheta\).

Zum Artikel Zu den Aufgaben

Wärmetransport

Grundwissen

  • Wärmetransport kann auf drei unterschiedliche Arten stattfinden: durch Wärmeleitung, durch Wärmemitführung (Wärmeströmung oder Konvektion) oder durch Wärmestrahlung (Temperaturstrahlung)
  • Im Alltag treten oft mehrere Arten gemeinsam auf
  • Häufig leistet eine Transportart den mit Abstand größten Beitrag zum gesamten Wärmetransport

Zum Artikel Zu den Aufgaben
Grundwissen

  • Wärmetransport kann auf drei unterschiedliche Arten stattfinden: durch Wärmeleitung, durch Wärmemitführung (Wärmeströmung oder Konvektion) oder durch Wärmestrahlung (Temperaturstrahlung)
  • Im Alltag treten oft mehrere Arten gemeinsam auf
  • Häufig leistet eine Transportart den mit Abstand größten Beitrag zum gesamten Wärmetransport

Zum Artikel Zu den Aufgaben

Teilchenmodell

Grundwissen

  • Alle Körper sind aus kleinen, sich ständig bewegenden Teilchen aufgebaut.
  • Ein Körper hat unterschiedliche Eigeschaften, je nachdem ob er fest, flüssig oder gasförmig ist.
  • Je mehr ein Stoff erwärmt wird, desto mehr bewegen sich die Teilchen des Stoffes.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Alle Körper sind aus kleinen, sich ständig bewegenden Teilchen aufgebaut.
  • Ein Körper hat unterschiedliche Eigeschaften, je nachdem ob er fest, flüssig oder gasförmig ist.
  • Je mehr ein Stoff erwärmt wird, desto mehr bewegen sich die Teilchen des Stoffes.

Zum Artikel Zu den Aufgaben

Universelle Gasgleichung

Grundwissen

Die universelle Gasgleichung lautet \[p \cdot V = k_{\rm B} \cdot N \cdot T\] mit dem Druck \(p\), dem Volumen \(V\), der Boltzmann-Konstanten \(k_{\rm B}\), der Teilchenzahl \(N\) und der Temperatur \(T\). 

Zum Artikel Zu den Aufgaben
Grundwissen

Die universelle Gasgleichung lautet \[p \cdot V = k_{\rm B} \cdot N \cdot T\] mit dem Druck \(p\), dem Volumen \(V\), der Boltzmann-Konstanten \(k_{\rm B}\), der Teilchenzahl \(N\) und der Temperatur \(T\). 

Zum Artikel Zu den Aufgaben

Starke und schwache Kausalität

Grundwissen

  • Schwacher Kausalität liegt vor, wenn exakt gleiche Ursachen die stets gleiche Wirkung zur Folge haben.
  •  Starker Kausalität liegt vor, wenn ähnliche Ursachen eine ähnliche Wirkung zur Folge haben. Kleine Änderungen im Ausgangszustand führen nur zu kleinen Änderungen im Ergebnis.
  • Viele Systeme in der Natur sind labile Gleichgewichtszustände. Hier liegt keine starke Kausalität vor.

Zum Artikel
Grundwissen

  • Schwacher Kausalität liegt vor, wenn exakt gleiche Ursachen die stets gleiche Wirkung zur Folge haben.
  •  Starker Kausalität liegt vor, wenn ähnliche Ursachen eine ähnliche Wirkung zur Folge haben. Kleine Änderungen im Ausgangszustand führen nur zu kleinen Änderungen im Ergebnis.
  • Viele Systeme in der Natur sind labile Gleichgewichtszustände. Hier liegt keine starke Kausalität vor.

Zum Artikel Zu den Aufgaben

Kausalitätsprinzip - Grenzen der NEWTONschen Mechanik

Grundwissen

  • Würde man einen Zustand vollständig kennen, könnte man mit Hilfe der Naturgesetze alle Folgen daraus ableiten.
  • Damit wäre alles Geschehen der Welt unabänderlich bestimmt (Determinismus).
  • Die Quantenmechanik und die Relativitätstheorie machen jedoch die Grenzen des Determinismus deutlich.

Zum Artikel
Grundwissen

  • Würde man einen Zustand vollständig kennen, könnte man mit Hilfe der Naturgesetze alle Folgen daraus ableiten.
  • Damit wäre alles Geschehen der Welt unabänderlich bestimmt (Determinismus).
  • Die Quantenmechanik und die Relativitätstheorie machen jedoch die Grenzen des Determinismus deutlich.

Zum Artikel Zu den Aufgaben

Volumen- und Längenänderung von Festkörpern

Grundwissen

  • Festkörper dehnen sich beim Erwärmen i.d.R. in alle Raumrichtung gleichmäßig aus.
  • Bei Festkörpern gibt man oft den Längenausdehnungskoeffizienten \(\alpha\) an.
  • Für die Längenänderung gilt \(\Delta l = \alpha \cdot {l_0} \cdot \Delta \vartheta\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Festkörper dehnen sich beim Erwärmen i.d.R. in alle Raumrichtung gleichmäßig aus.
  • Bei Festkörpern gibt man oft den Längenausdehnungskoeffizienten \(\alpha\) an.
  • Für die Längenänderung gilt \(\Delta l = \alpha \cdot {l_0} \cdot \Delta \vartheta\).

Zum Artikel Zu den Aufgaben

Viertakt-Ottomotor

Grundwissen

  • Die 4 Takte sind: Ansaugen, Verdichten, Arbeiten, Auspuffen
  • Mehrere Zylinder eines Motors laufen versetzt. Ziel ist, dass immer ein Zylinder gerade im Arbeitstakt ist.
  • Der Wirkungsgrad eines Ottomotors liegt im Idealfall bei \(\eta=35\,\%\), meist jedoch deutlich darunter.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die 4 Takte sind: Ansaugen, Verdichten, Arbeiten, Auspuffen
  • Mehrere Zylinder eines Motors laufen versetzt. Ziel ist, dass immer ein Zylinder gerade im Arbeitstakt ist.
  • Der Wirkungsgrad eines Ottomotors liegt im Idealfall bei \(\eta=35\,\%\), meist jedoch deutlich darunter.

Zum Artikel Zu den Aufgaben

Volumenänderung von Stoffen

Grundwissen

  • Die meisten Körper vergrößern bei Erwärmung ihr Volumen.
  • Die Volumenänderung ist bei Gasen größer als bei Flüssigkeiten und bei Flüssigkeiten größer als bei Festkörpern.
  • Wasser und Gummi verhalten sich in bestimmten Temperaturbereichen anders.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die meisten Körper vergrößern bei Erwärmung ihr Volumen.
  • Die Volumenänderung ist bei Gasen größer als bei Flüssigkeiten und bei Flüssigkeiten größer als bei Festkörpern.
  • Wasser und Gummi verhalten sich in bestimmten Temperaturbereichen anders.

Zum Artikel Zu den Aufgaben

CELSIUS-Skala

Grundwissen

  • Zur objektiven Bestimmung der Temperatur wird häufig eine Skala mit der Einteilung Grad Celsius (\(^\circ\rm{C}\)) genutzt.
  • Der Schmelzpunkt des Eises wird als \(0\,^\circ\rm{C}\) festgelegt, der Siedepunkt des Wassers als \(100\,^\circ\rm{C}\).
  • Der hundertste Teil dieses Abstandes ist die Temperaturdifferenz \(1\,^\circ\rm{C}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Zur objektiven Bestimmung der Temperatur wird häufig eine Skala mit der Einteilung Grad Celsius (\(^\circ\rm{C}\)) genutzt.
  • Der Schmelzpunkt des Eises wird als \(0\,^\circ\rm{C}\) festgelegt, der Siedepunkt des Wassers als \(100\,^\circ\rm{C}\).
  • Der hundertste Teil dieses Abstandes ist die Temperaturdifferenz \(1\,^\circ\rm{C}\).

Zum Artikel Zu den Aufgaben

BROWNsche Bewegung und Innere Energie

Grundwissen

  • Die Atome eines Körpers sind auch ohne Krafteinwirkung von außen immer in Bewegung.
  • Einen Festkörper kannst du dir als Feder-Kugel-Modell vorstellen.
  • Die Summe aller kinetischen und potentiellen Energien der Atome eines Körpers wird als innere Energie bezeichnet.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Atome eines Körpers sind auch ohne Krafteinwirkung von außen immer in Bewegung.
  • Einen Festkörper kannst du dir als Feder-Kugel-Modell vorstellen.
  • Die Summe aller kinetischen und potentiellen Energien der Atome eines Körpers wird als innere Energie bezeichnet.

Zum Artikel Zu den Aufgaben

Temperaturumrechnung

Grundwissen

  • Für die Umrechnung von Kelvin in Grad Celsius subtrahierst du 273,15 und passt die Einheit an.
  • Für die Umrechnung von Grad Celsius in Kelvin addierst du 273,15 und passt die Einheit an.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Für die Umrechnung von Kelvin in Grad Celsius subtrahierst du 273,15 und passt die Einheit an.
  • Für die Umrechnung von Grad Celsius in Kelvin addierst du 273,15 und passt die Einheit an.

Zum Artikel Zu den Aufgaben

Gesetz von BOYLE und MARIOTTE

Grundwissen

  • Wird eine feste Menge (konstante Teilchenzahl \(N\)) eines Idealen Gases auf einer konstanten Temperatur \(T\) gehalten, während sich der Druck oder das Volumen der Gasmenge ändern, so spricht man von einer isothermen Zustandsänderung der Gasmenge.
  • Bei derartigen isothermen Zuständänderungen ist das Volumen \(V\) der Gasmenge umgekehrt proportional zum Druck \(p\)\[V \sim \frac{1}{p}\;\;\;\rm{bzw.}\;\;\;p \cdot V\;\rm{ist\;konstant}\;\;\;\rm{bzw.}\;\;\;p_1 \cdot V_1 = p_2 \cdot V_2\]

Zum Artikel Zu den Aufgaben
Grundwissen

  • Wird eine feste Menge (konstante Teilchenzahl \(N\)) eines Idealen Gases auf einer konstanten Temperatur \(T\) gehalten, während sich der Druck oder das Volumen der Gasmenge ändern, so spricht man von einer isothermen Zustandsänderung der Gasmenge.
  • Bei derartigen isothermen Zuständänderungen ist das Volumen \(V\) der Gasmenge umgekehrt proportional zum Druck \(p\)\[V \sim \frac{1}{p}\;\;\;\rm{bzw.}\;\;\;p \cdot V\;\rm{ist\;konstant}\;\;\;\rm{bzw.}\;\;\;p_1 \cdot V_1 = p_2 \cdot V_2\]

Zum Artikel Zu den Aufgaben

Gesetz von GAY-LUSSAC

Grundwissen

  • Wird eine feste Menge (konstante Teilchenzahl \(N\)) eines Idealen Gases auf einem konstanten Druck \(p\) gehalten, während sich die Temperatur oder das Volumen der Gasmenge ändern, so spricht man von einer isobaren Zustandsänderung der Gasmenge.
  • Bei derartigen isobaren Zuständänderungen ist das Volumen \(V\) proportional zur Temperatur \(T\)\[V \sim T\;\;\;\rm{bzw.}\;\;\;\frac{V}{T} \;\rm{ist\;konstant}\;\;\;\rm{bzw.}\;\;\;\frac{V_1}{T_1} = \frac{V_2}{T_2}\]

Zum Artikel Zu den Aufgaben
Grundwissen

  • Wird eine feste Menge (konstante Teilchenzahl \(N\)) eines Idealen Gases auf einem konstanten Druck \(p\) gehalten, während sich die Temperatur oder das Volumen der Gasmenge ändern, so spricht man von einer isobaren Zustandsänderung der Gasmenge.
  • Bei derartigen isobaren Zuständänderungen ist das Volumen \(V\) proportional zur Temperatur \(T\)\[V \sim T\;\;\;\rm{bzw.}\;\;\;\frac{V}{T} \;\rm{ist\;konstant}\;\;\;\rm{bzw.}\;\;\;\frac{V_1}{T_1} = \frac{V_2}{T_2}\]

Zum Artikel Zu den Aufgaben

Phasenübergänge

Grundwissen

  • Phasenübergänge sind zwischen allen Zuständen (fest. flüssig, gasförmig) möglich.
  • Bei Phasenübergängen muss Energie hinzugefügt werden bzw. wird Energie frei. Die Temperatur verändert sich dabei zunächst nicht.
  • Bei den Phasenübergängen verändern sich die Bindungen zwischen den Teilchen. Die potentielle Energie (Teil der inneren Energie) ändert sich hierbei

Zum Artikel Zu den Aufgaben
Grundwissen

  • Phasenübergänge sind zwischen allen Zuständen (fest. flüssig, gasförmig) möglich.
  • Bei Phasenübergängen muss Energie hinzugefügt werden bzw. wird Energie frei. Die Temperatur verändert sich dabei zunächst nicht.
  • Bei den Phasenübergängen verändern sich die Bindungen zwischen den Teilchen. Die potentielle Energie (Teil der inneren Energie) ändert sich hierbei

Zum Artikel Zu den Aufgaben

Erster Hauptsatz der Wärmelehre

Grundwissen

  • Die innere Energie \(E_{\rm{i}}\) eines Systems kann durch Zufuhr oder Entzug von mechanische Arbeit \(W\) und/oder einer Wärmemenge \(Q\) erhöht oder verringert werden.
  • Der 1. Hauptsatz der Wärmelehre lautet \(\Delta E_{\rm i} = W + Q\).

Zum Artikel
Grundwissen

  • Die innere Energie \(E_{\rm{i}}\) eines Systems kann durch Zufuhr oder Entzug von mechanische Arbeit \(W\) und/oder einer Wärmemenge \(Q\) erhöht oder verringert werden.
  • Der 1. Hauptsatz der Wärmelehre lautet \(\Delta E_{\rm i} = W + Q\).

Zum Artikel Zu den Aufgaben

Wärmeleitung

Grundwissen

  • Bei der Wärmeleitung bewegt sich nur die Wärme durch den Körper, die einzelnen Teilchen, aus denen der Körper besteht, bleiben dagegen an ihrem Platz
  • Wärmeleitung tritt deshalb meistens beim Wärmetransport in und zwischen Festkörpern auf
  • Metalle sind gute Wärmeleiter, Flüssigkeiten und Gase dagegen sind schlechte Wärmeleiter

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei der Wärmeleitung bewegt sich nur die Wärme durch den Körper, die einzelnen Teilchen, aus denen der Körper besteht, bleiben dagegen an ihrem Platz
  • Wärmeleitung tritt deshalb meistens beim Wärmetransport in und zwischen Festkörpern auf
  • Metalle sind gute Wärmeleiter, Flüssigkeiten und Gase dagegen sind schlechte Wärmeleiter

Zum Artikel Zu den Aufgaben

Wärmemitführung

Grundwissen

  • Bei der Wärmemitführung (Wärmeströmung, Konvektion) bewegt sich die Wärme mit den einzelnen Teilchen, aus denen der Körper besteht, durch den Körper hindurch - es findet also auch ein Materietransport statt
  • Wärmemitführung tritt in der Regel nur in Flüssigkeiten und Gasen auf.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei der Wärmemitführung (Wärmeströmung, Konvektion) bewegt sich die Wärme mit den einzelnen Teilchen, aus denen der Körper besteht, durch den Körper hindurch - es findet also auch ein Materietransport statt
  • Wärmemitführung tritt in der Regel nur in Flüssigkeiten und Gasen auf.

Zum Artikel Zu den Aufgaben

Treibhauseffekt

Grundwissen

  • Man unterscheidet zwischen natürlichem und vom Menschen gemachten Treibhauseffekt.
  • Der natürliche Treibhauseffekt macht die Erde erst lebenswert.
  • Der menschengemachte Treibhauseffekt durch Ausstoß von Treibhausgasen sorgt für eine weitere Erderwärmung mit vielen negativen Folgen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Man unterscheidet zwischen natürlichem und vom Menschen gemachten Treibhauseffekt.
  • Der natürliche Treibhauseffekt macht die Erde erst lebenswert.
  • Der menschengemachte Treibhauseffekt durch Ausstoß von Treibhausgasen sorgt für eine weitere Erderwärmung mit vielen negativen Folgen.

Zum Artikel Zu den Aufgaben

Gesetz von AMONTONS

Grundwissen

  • Wird eine feste Menge (konstante Teilchenzahl \(N\)) eines Idealen Gases auf einem konstanten Volumen \(V\) gehalten, während sich die Temperatur oder der Druck der Gasmenge ändern, so spricht man von einer isochoren Zustandsänderung der Gasmenge.
  • Bei derartigen isochoren Zustandsänderungen ist der Druck \(p\) proportional zur Temperatur \(T\)\[p \sim T\;\;\;\rm{bzw.}\;\;\;\frac{p}{T} \;\rm{ist\;konstant}\;\;\;\rm{bzw.}\;\;\;\frac{p_1}{T_1} = \frac{p_2}{T_2}\]

Zum Artikel Zu den Aufgaben
Grundwissen

  • Wird eine feste Menge (konstante Teilchenzahl \(N\)) eines Idealen Gases auf einem konstanten Volumen \(V\) gehalten, während sich die Temperatur oder der Druck der Gasmenge ändern, so spricht man von einer isochoren Zustandsänderung der Gasmenge.
  • Bei derartigen isochoren Zustandsänderungen ist der Druck \(p\) proportional zur Temperatur \(T\)\[p \sim T\;\;\;\rm{bzw.}\;\;\;\frac{p}{T} \;\rm{ist\;konstant}\;\;\;\rm{bzw.}\;\;\;\frac{p_1}{T_1} = \frac{p_2}{T_2}\]

Zum Artikel Zu den Aufgaben