Direkt zum Inhalt
Suchergebnisse 1621 - 1650 von 1744

OHMsches Gesetz (Version B)

Versuche

Ein einfacher Stromkreis besteht aus einer elektrischen Quelle, mit der man die Stromstärke im Stromkreis verändern kann, und einem Leiter.

Wie hängt die Spannung \(U\), die über dem Leiter abfällt, von der Stärke \(I\) des Stroms, der durch den Leiter fließt ab?

Zum Artikel
Versuche

Ein einfacher Stromkreis besteht aus einer elektrischen Quelle, mit der man die Stromstärke im Stromkreis verändern kann, und einem Leiter.

Wie hängt die Spannung \(U\), die über dem Leiter abfällt, von der Stärke \(I\) des Stroms, der durch den Leiter fließt ab?

Zum Artikel Zu den Aufgaben

Gravitationsfeld (Animation)

Download ( Simulation )

Die Animation zeigt die stärker werdende Homogenität des Gravitationsfeldes bei der Annäherung an die Erdoberfläche.

Zum Download
Download ( Simulation )

Die Animation zeigt die stärker werdende Homogenität des Gravitationsfeldes bei der Annäherung an die Erdoberfläche.

Zum Download

Doppeltes Federpendel (Animation)

Download ( Simulation )

Die Animation zeigt die Bewegung eines doppelten Federpendels und einige Größen, die zur Beschreibung der Bewegung wichtig sind.

Zum Download
Download ( Simulation )

Die Animation zeigt die Bewegung eines doppelten Federpendels und einige Größen, die zur Beschreibung der Bewegung wichtig sind.

Zum Download

Autoscooter (CK-12-Simulation)

Download ( Simulation )

Die Simulation wird zur Verfügung gestellt von https://www.ck12.org. https://www.ck12.org Lizenz:…

Zum Download
Download ( Simulation )

Die Simulation wird zur Verfügung gestellt von https://www.ck12.org. https://www.ck12.org Lizenz:…

Zum Download

Autoscooter (CK-12-Simulation)

Versuche

  • Elastische und inelastische Stöße vergleichen
  • Kräfte bei Stoßprozessen untersuchen
  • Einfluss von Massen und Geschwindigkeiten der Stoßpartner prüfen

Zum Artikel
Versuche

  • Elastische und inelastische Stöße vergleichen
  • Kräfte bei Stoßprozessen untersuchen
  • Einfluss von Massen und Geschwindigkeiten der Stoßpartner prüfen

Zum Artikel Zu den Aufgaben

Stoßversuche mit Luftkissenscheiben

Versuche

Mit Luftkissenscheiben kannst du sehr einfach viele Versuche zu Stoßprozessen selbst durchführen und auch quantitativ analysieren.

Zum Artikel
Versuche

Mit Luftkissenscheiben kannst du sehr einfach viele Versuche zu Stoßprozessen selbst durchführen und auch quantitativ analysieren.

Zum Artikel Zu den Aufgaben

Fahrstuhl (CK-12-Simulation)

Download ( Simulation )

Die Simulation wird zur Verfügung gestellt von https://www.ck12.org. https://www.ck12.org Lizenz:…

Zum Download
Download ( Simulation )

Die Simulation wird zur Verfügung gestellt von https://www.ck12.org. https://www.ck12.org Lizenz:…

Zum Download

Fahrstuhl (CK-12-Simulation)

Versuche

Mithilfe der CK12-Simulation 'Fahrstuhl' kannst du untersuchen, warum eine Waage in einem Fahrstuhl nicht immer das korrekte 'Gewicht' anzeigt.

Zum Artikel
Versuche

Mithilfe der CK12-Simulation 'Fahrstuhl' kannst du untersuchen, warum eine Waage in einem Fahrstuhl nicht immer das korrekte 'Gewicht' anzeigt.

Zum Artikel Zu den Aufgaben

Waage im Aufzug

Versuche

Wenn du wissen willst, wie viel du wiegst, stellst du dich im Normalfall auf eine Waage und liest das Anzeigeergebnis in Kilogramm ab. Der folgende Versuch zeigt  jedoch, dass der Wert, den die Waage anzeigt, nicht immer mit der physikalischen Größe ‘Masse’ identisch ist.

Zum Artikel
Versuche

Wenn du wissen willst, wie viel du wiegst, stellst du dich im Normalfall auf eine Waage und liest das Anzeigeergebnis in Kilogramm ab. Der folgende Versuch zeigt  jedoch, dass der Wert, den die Waage anzeigt, nicht immer mit der physikalischen Größe ‘Masse’ identisch ist.

Zum Artikel Zu den Aufgaben

Trampolin (CK-12-Simulation)

Versuche

  • Energieumwandlungsketten analysieren
  • Beiträge einzelner Energieformen zur Gesamtenergie ermitteln
  • Maximalwerte einzelner Energieformen im Zeitverlauf der Umwandlung bestimmen

Zum Artikel
Versuche

  • Energieumwandlungsketten analysieren
  • Beiträge einzelner Energieformen zur Gesamtenergie ermitteln
  • Maximalwerte einzelner Energieformen im Zeitverlauf der Umwandlung bestimmen

Zum Artikel Zu den Aufgaben

Trampolin (CK-12-Simulation)

Download ( Simulation )

Die Simulation wird zur Verfügung gestellt von https://www.ck12.org. https://www.ck12.org Lizenz:…

Zum Download
Download ( Simulation )

Die Simulation wird zur Verfügung gestellt von https://www.ck12.org. https://www.ck12.org Lizenz:…

Zum Download

Gravitationsfeld einer Punktmasse (Simulation)

Download ( Simulation )

Die Simulation zeigt die Darstellung des Gravitationsfeldes einer punktförmigen Masse durch Feldstärkevektoren.

Zum Download
Download ( Simulation )

Die Simulation zeigt die Darstellung des Gravitationsfeldes einer punktförmigen Masse durch Feldstärkevektoren.

Zum Download

Gravitationsfeld an der Erdoberfläche (Simulation)

Download ( Simulation )

Die Simulation zeigt die Darstellung des Gravitationsfeldes an der Erdoberfläche durch Feldstärkevektoren.

Zum Download
Download ( Simulation )

Die Simulation zeigt die Darstellung des Gravitationsfeldes an der Erdoberfläche durch Feldstärkevektoren.

Zum Download

Gravitationskraft zwischen zwei Punktmassen (Simulation)

Download ( Simulation )

Die Simulation zeigt die Gravitationskraft zwischen zwei Punktmassen.

Zum Download
Download ( Simulation )

Die Simulation zeigt die Gravitationskraft zwischen zwei Punktmassen.

Zum Download

Gravitationskraft zwischen der Erdoberfläche und einer Punktmasse (Simulation)

Download ( Simulation )

Die Simulation zeigt die Gravitationskraft zwischen der Erdoberfläche und einer Punktmasse.

Zum Download
Download ( Simulation )

Die Simulation zeigt die Gravitationskraft zwischen der Erdoberfläche und einer Punktmasse.

Zum Download

Gravitationskraft

Grundwissen

  • Die Gravitationskraft \(\vec F_{\rm{G}}\) zwischen zwei punktförmigen Massen \(m_1\) und \(m_2\) liegt auf der Verbindungslinie der beiden Massen. Der Betrag \(F_{\rm{G}}\) der Gravitationskraft ist proportional zu den Massen \(m_1\) sowie \(m_2\) und umgekehrt proportional zum Quadrat des Abstands \(r\) der Massen. Er berechnet sich durch \(F_{\rm{G}} = G \cdot \frac{m_1 \cdot m_2}{{{r^2}}}\) mit der Gravitationskonstante \(G = 6{,}674 \cdot {10^{ - 11}}\,\frac{{{{\rm{m}}^3}}}{{{\rm{kg}} \cdot {{\rm{s}}^2}}}\).
  • Die Gravitationskraft \(\vec F_{\rm{G}}\) auf eine punktförmige Masse \(m\) an der Erdoberfläche ist senkrecht zur Erdoberfläche gerichtet. Der Betrag \(F_{\rm{G}}\) der Gravitationskraft ist proportional zur Masse \(m\). Er berechnet sich durch \(F_{\rm{G}}=m \cdot g\). In der Praxis benutzen wir in Deutschland den Wert \(g = 9{,}81\frac{{\rm{N}}}{{{\rm{kg}}}}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Gravitationskraft \(\vec F_{\rm{G}}\) zwischen zwei punktförmigen Massen \(m_1\) und \(m_2\) liegt auf der Verbindungslinie der beiden Massen. Der Betrag \(F_{\rm{G}}\) der Gravitationskraft ist proportional zu den Massen \(m_1\) sowie \(m_2\) und umgekehrt proportional zum Quadrat des Abstands \(r\) der Massen. Er berechnet sich durch \(F_{\rm{G}} = G \cdot \frac{m_1 \cdot m_2}{{{r^2}}}\) mit der Gravitationskonstante \(G = 6{,}674 \cdot {10^{ - 11}}\,\frac{{{{\rm{m}}^3}}}{{{\rm{kg}} \cdot {{\rm{s}}^2}}}\).
  • Die Gravitationskraft \(\vec F_{\rm{G}}\) auf eine punktförmige Masse \(m\) an der Erdoberfläche ist senkrecht zur Erdoberfläche gerichtet. Der Betrag \(F_{\rm{G}}\) der Gravitationskraft ist proportional zur Masse \(m\). Er berechnet sich durch \(F_{\rm{G}}=m \cdot g\). In der Praxis benutzen wir in Deutschland den Wert \(g = 9{,}81\frac{{\rm{N}}}{{{\rm{kg}}}}\).

Zum Artikel Zu den Aufgaben

Gravitationskraft zwischen einer Punktmasse und einer homogenen Kugel (Simulation)

Download ( Simulation )

Die Simulation zeigt die Gravitationskraft zwischen einer Punktmasse und einer homogenen Kugel.

Zum Download
Download ( Simulation )

Die Simulation zeigt die Gravitationskraft zwischen einer Punktmasse und einer homogenen Kugel.

Zum Download

Massen und Federn (Simulation)

Download ( Simulation )

Die Simulation wird zur Verfügung gestellt von: PhET Interactive Simulations University of Colorado Boulder https://phet.colorado.edu Informationen…

Zum Download
Download ( Simulation )

Die Simulation wird zur Verfügung gestellt von: PhET Interactive Simulations University of Colorado Boulder https://phet.colorado.edu Informationen…

Zum Download

Massen und Federn (Simulation von PhET)

Versuche
Versuche

Energieentwertung durch Reibung

Grundwissen

  • Bei der Betrachtung von mechanischen Systemen wird die Reibung oft vernachlässigt.
  • In realen Systemen tritt (außer im Weltraum) allerdings immer Reibung auf.
  • Das Auftreten von Reibung ist mit einer irreversiblen Energieentwertung verbunden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei der Betrachtung von mechanischen Systemen wird die Reibung oft vernachlässigt.
  • In realen Systemen tritt (außer im Weltraum) allerdings immer Reibung auf.
  • Das Auftreten von Reibung ist mit einer irreversiblen Energieentwertung verbunden.

Zum Artikel Zu den Aufgaben

Leiter und Nichtleiter

Grundwissen

  • Materialien können grob in zwei Kategorien eingeteilt werden: Leiter (z.B. Metalle) und Nichtleiter (z.B. Kunststoffe).
  • Ob ein Material Strom gut oder schlecht leitet kannst du mit einer Testschaltung prüfen.
  • Je mehr Salz im Wasser gelöst ist, desto besser leitet Wasser Strom.
  • Die meisten Gase leiten Strom nicht.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Materialien können grob in zwei Kategorien eingeteilt werden: Leiter (z.B. Metalle) und Nichtleiter (z.B. Kunststoffe).
  • Ob ein Material Strom gut oder schlecht leitet kannst du mit einer Testschaltung prüfen.
  • Je mehr Salz im Wasser gelöst ist, desto besser leitet Wasser Strom.
  • Die meisten Gase leiten Strom nicht.

Zum Artikel Zu den Aufgaben

Stabile Kreisbahnen im Gravitationsfeld

Grundwissen

Bewegt sich ein Trabant auf einer stabilen Kreisbahn im Gravitationsfeld eines Zentralkörpers, dann beträgt

  • die potenzielle Energie des Systems Zentralkörper-Trabant \({E_{{\rm{pot}}}}\left( r \right) =  - G \cdot m \cdot M \cdot \frac{1}{r}\)
  • die kinetische Energie des Trabanten \({E_{{\rm{kin}}}} = \frac{1}{2} \cdot \left| {{E_{{\rm{pot}}}}} \right|\)
  • die Gesamtenergie des Systems Zentralkörper-Trabant \({E_{{\rm{ges}}}} = {\frac{1}{2} \cdot {E_{{\rm{pot}}}}}\)

Zum Artikel Zu den Aufgaben
Grundwissen

Bewegt sich ein Trabant auf einer stabilen Kreisbahn im Gravitationsfeld eines Zentralkörpers, dann beträgt

  • die potenzielle Energie des Systems Zentralkörper-Trabant \({E_{{\rm{pot}}}}\left( r \right) =  - G \cdot m \cdot M \cdot \frac{1}{r}\)
  • die kinetische Energie des Trabanten \({E_{{\rm{kin}}}} = \frac{1}{2} \cdot \left| {{E_{{\rm{pot}}}}} \right|\)
  • die Gesamtenergie des Systems Zentralkörper-Trabant \({E_{{\rm{ges}}}} = {\frac{1}{2} \cdot {E_{{\rm{pot}}}}}\)

Zum Artikel Zu den Aufgaben

Elektrische Ladung

Grundwissen

  • Die Einheit der elektrischen Ladung, Symbol \(Q\), ist das Coulomb, Symbol \(\rm{C}\).
  • Ein Elektron besitzt die negative Elementarladung: \(q_{\rm{Elektron}}=-e = -1{,}6 \cdot 10^{-19}\,\rm{C}\).

Zum Artikel
Grundwissen

  • Die Einheit der elektrischen Ladung, Symbol \(Q\), ist das Coulomb, Symbol \(\rm{C}\).
  • Ein Elektron besitzt die negative Elementarladung: \(q_{\rm{Elektron}}=-e = -1{,}6 \cdot 10^{-19}\,\rm{C}\).

Zum Artikel Zu den Aufgaben

Energieentwertung durch Reibung - Bewegung ohne Reibung (Animation)

Download ( Animationen )

Die Animation zeigt die Bewegung eines Rollerskaters in einer Halfpipe ohne Reibungsverluste.

Zum Download
Download ( Animationen )

Die Animation zeigt die Bewegung eines Rollerskaters in einer Halfpipe ohne Reibungsverluste.

Zum Download

Energieentwertung durch Reibung - Bewegung mit Reibung (Animation)

Download ( Animationen )

Die Animation zeigt die Bewegung eines Rollerskaters in einer Halfpipe mit Reibungsverlusten.

Zum Download
Download ( Animationen )

Die Animation zeigt die Bewegung eines Rollerskaters in einer Halfpipe mit Reibungsverlusten.

Zum Download

Arbeit im Weg-Kraft-Diagramm

Grundwissen

  • Die Formel $W=F\cdot s$ zur Berechnung der Arbeit gilt nur, wenn die wirkende Kraft konstant ist.
  • Ändern sich die wirkenden Kräfte hilft die Interpretation von Arbeit als Fläche im Weg-Kraft-Diagramm.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Formel $W=F\cdot s$ zur Berechnung der Arbeit gilt nur, wenn die wirkende Kraft konstant ist.
  • Ändern sich die wirkenden Kräfte hilft die Interpretation von Arbeit als Fläche im Weg-Kraft-Diagramm.

Zum Artikel Zu den Aufgaben

COULOMB-Feld - Elektrische Kraft (Simulation)

Download ( Simulation )

Die Simulation zeigt die elektrische Kraft auf eine (bewegliche) Punktladung im Raum um eine (ortsfeste) Punktladung (COULOMB-Kraft). Die Simulation…

Zum Download
Download ( Simulation )

Die Simulation zeigt die elektrische Kraft auf eine (bewegliche) Punktladung im Raum um eine (ortsfeste) Punktladung (COULOMB-Kraft). Die Simulation…

Zum Download

Homogenes elektrisches Feld - Elektrische Kraft (Simulation)

Download ( Simulation )

Die Simulation zeigt die elektrische Kraft auf eine Punktladung im Zwischenraum zweier entgegengesetzt geladener Platten. Die Simulation rechnet mit…

Zum Download
Download ( Simulation )

Die Simulation zeigt die elektrische Kraft auf eine Punktladung im Zwischenraum zweier entgegengesetzt geladener Platten. Die Simulation rechnet mit…

Zum Download

Elektrische Kraft (2 Spezialfälle)

Grundwissen

  • Die elektrische Kraft \(\vec F_{\rm{el}}\) auf eine Punktladung \(q\) im Zwischenraum zweier entgegengesetzt geladener paralleler Platten (Flächeninhalt \(A\), Ladung \(Q\)) ist senkrecht zu den Plattenoberflächen gerichtet. Der Betrag \(F_{\rm{el}}\) dieser elektrischen Kraft berechnet sich durch \(F_{\rm{el}} = \frac{1}{\varepsilon _0} \cdot \frac{\left| Q \right| \cdot \left|q \right|}{A}\).
  • Die elektrische Kraft \(\vec F_{\rm{C}}\) auf eine Punktladung \(q\) im Abstand \(r\) von einer ortsfesten Punktladung \(Q\) (COULOMB-Kraft) liegt auf der Verbindungsgeraden der beiden Ladungen. Der Betrag \(F_{\rm{C}}\) dieser COULOMB-Kraft berechnet sich durch \(F_{\rm{C}} = \frac{1}{4 \cdot \pi  \cdot \varepsilon _0} \cdot \frac{\left|Q\right| \cdot \left|q\right|}{{{r^2}}}\).
  • Dabei ist jeweils \(\varepsilon_0 = 8{,}854 \cdot {10^{-12}}\,\frac{\rm{A}\,\rm{s}}{\rm{V}\,\rm{m}}\) die elektrische Feldkonstante. 

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die elektrische Kraft \(\vec F_{\rm{el}}\) auf eine Punktladung \(q\) im Zwischenraum zweier entgegengesetzt geladener paralleler Platten (Flächeninhalt \(A\), Ladung \(Q\)) ist senkrecht zu den Plattenoberflächen gerichtet. Der Betrag \(F_{\rm{el}}\) dieser elektrischen Kraft berechnet sich durch \(F_{\rm{el}} = \frac{1}{\varepsilon _0} \cdot \frac{\left| Q \right| \cdot \left|q \right|}{A}\).
  • Die elektrische Kraft \(\vec F_{\rm{C}}\) auf eine Punktladung \(q\) im Abstand \(r\) von einer ortsfesten Punktladung \(Q\) (COULOMB-Kraft) liegt auf der Verbindungsgeraden der beiden Ladungen. Der Betrag \(F_{\rm{C}}\) dieser COULOMB-Kraft berechnet sich durch \(F_{\rm{C}} = \frac{1}{4 \cdot \pi  \cdot \varepsilon _0} \cdot \frac{\left|Q\right| \cdot \left|q\right|}{{{r^2}}}\).
  • Dabei ist jeweils \(\varepsilon_0 = 8{,}854 \cdot {10^{-12}}\,\frac{\rm{A}\,\rm{s}}{\rm{V}\,\rm{m}}\) die elektrische Feldkonstante. 

Zum Artikel Zu den Aufgaben

Homogenes elektrisches Feld - Elektrische Feldstärke (Simulation)

Download ( Simulation )

Die Simulation zeigt die elektrische Feldstärke (in Form von Feldstärkevektoren) im Zwischenraum zweier entgegengesetzt geladener Platten. Die…

Zum Download
Download ( Simulation )

Die Simulation zeigt die elektrische Feldstärke (in Form von Feldstärkevektoren) im Zwischenraum zweier entgegengesetzt geladener Platten. Die…

Zum Download