Direkt zum Inhalt
Suchergebnisse 1 - 7 von 7

Gravitationsfeld

Grundwissen

  • Im Raum um eine Masse herrscht ein Gravitationsfeld. Dieses Gravitationsfeld übertragt die Kraftwirkung dieser Masse auf andere Massen.
  • Als Gravitationsfeldstärke definieren wir den Quotienten aus der Gravitationskraft \({\vec F_{\rm{G}}}\) auf einen Probekörper und der Masse \(m\) des Probekörpers: \(\vec g = \frac{{{{\vec F}_{\rm{G}}}}}{m}\).
  • Der Betrag \(g\) der Gravitationsfeldstärke im Raum um eine punktförmige Masse ist proportional zu deren Masse \(M\) und umgekehrt proportional zum Quadrat des Abstands \(r\) zur Masse \(M\) (radiales Gravitationsfeld): \(g = G \cdot \frac{M}{{{r^2}}}\) mit der Gravitationskonstante \(G = 6{,}673 \cdot {10^{ - 11}}\,\frac{{{{\rm{m}}^3}}}{{{\rm{kg}} \cdot {{\rm{s}}^2}}}\).
  • Der Betrag \(g\) der Gravitationsfeldstärke an der Erdoberfläche ist konstant (homogenes Gravitationsfeld). Wir nutzen den Wert \(g = 9{,}81\frac{{\rm{N}}}{{{\rm{kg}}}}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Im Raum um eine Masse herrscht ein Gravitationsfeld. Dieses Gravitationsfeld übertragt die Kraftwirkung dieser Masse auf andere Massen.
  • Als Gravitationsfeldstärke definieren wir den Quotienten aus der Gravitationskraft \({\vec F_{\rm{G}}}\) auf einen Probekörper und der Masse \(m\) des Probekörpers: \(\vec g = \frac{{{{\vec F}_{\rm{G}}}}}{m}\).
  • Der Betrag \(g\) der Gravitationsfeldstärke im Raum um eine punktförmige Masse ist proportional zu deren Masse \(M\) und umgekehrt proportional zum Quadrat des Abstands \(r\) zur Masse \(M\) (radiales Gravitationsfeld): \(g = G \cdot \frac{M}{{{r^2}}}\) mit der Gravitationskonstante \(G = 6{,}673 \cdot {10^{ - 11}}\,\frac{{{{\rm{m}}^3}}}{{{\rm{kg}} \cdot {{\rm{s}}^2}}}\).
  • Der Betrag \(g\) der Gravitationsfeldstärke an der Erdoberfläche ist konstant (homogenes Gravitationsfeld). Wir nutzen den Wert \(g = 9{,}81\frac{{\rm{N}}}{{{\rm{kg}}}}\).

Zum Artikel Zu den Aufgaben

Wechselwirkung ungleich Gleichgewicht

Grundwissen

  • Wechselwirkungskräfte und Kräftegleichgewicht dürfen nicht verwechselt werden.
  • Wechselwirkungskräfte greifen immer an zwei unterschiedlichen Körpern an, Kräfte im Gleichgewicht an einem einzigen Körper.
  • Wechselwirkungskräfte treten immer auf, ein Kräftegleichgewicht kann nur vorliegen, muss aber nicht.

Zum Artikel
Grundwissen

  • Wechselwirkungskräfte und Kräftegleichgewicht dürfen nicht verwechselt werden.
  • Wechselwirkungskräfte greifen immer an zwei unterschiedlichen Körpern an, Kräfte im Gleichgewicht an einem einzigen Körper.
  • Wechselwirkungskräfte treten immer auf, ein Kräftegleichgewicht kann nur vorliegen, muss aber nicht.

Zum Artikel Zu den Aufgaben

Energiebetrachtung bei Harmonischen Schwingungen

Grundwissen

  • Ein allgemeines Kennzeichen für mechanische Schwingungen ist das periodische Hin- und Herpendeln zwischen zwei Energieformen.
  • Bei ungedämpften mechanischen Schwingungen ist die Summe der Energien, die in den beiden Energieformen vorliegen, zeitlich konstant.

Zum Artikel
Grundwissen

  • Ein allgemeines Kennzeichen für mechanische Schwingungen ist das periodische Hin- und Herpendeln zwischen zwei Energieformen.
  • Bei ungedämpften mechanischen Schwingungen ist die Summe der Energien, die in den beiden Energieformen vorliegen, zeitlich konstant.

Zum Artikel Zu den Aufgaben

Schwebemagnete auf der Waage

Aufgabe ( Übungsaufgaben )

Joachim Herz Stiftung Abb. 1 Skizze zur AufgabeZwei Magnete (Masse je 100g) liegen so auf einer Waage, dass der eine Magnet über dem anderen…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Joachim Herz Stiftung Abb. 1 Skizze zur AufgabeZwei Magnete (Masse je 100g) liegen so auf einer Waage, dass der eine Magnet über dem anderen…

Zur Aufgabe

Magnetschwebebahn Transrapid

Aufgabe ( Übungsaufgaben )

Joachim Herz Stiftung Abb. 1 Magnetschwebebahn TransrapidMagnetschwebebahnen wie der Transrapid können Spitzengeschwindigkeiten von ca.…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Joachim Herz Stiftung Abb. 1 Magnetschwebebahn TransrapidMagnetschwebebahnen wie der Transrapid können Spitzengeschwindigkeiten von ca.…

Zur Aufgabe

Kosmische Geschwindigkeiten

Grundwissen

Mit Hilfe der drei kosmischen Geschwindigkeiten kann man abschätzen, welche Endgeschwindigkeiten Raketen besitzen müssen, um

  • einen Satelliten in eine stabile Umlaufbahn zu bringen
  • Menschen zu anderen Himmelskörpern zu befördern
  • mit einer Sonde unser Sonnensystem verlassen zu können.

Zum Artikel Zu den Aufgaben
Grundwissen

Mit Hilfe der drei kosmischen Geschwindigkeiten kann man abschätzen, welche Endgeschwindigkeiten Raketen besitzen müssen, um

  • einen Satelliten in eine stabile Umlaufbahn zu bringen
  • Menschen zu anderen Himmelskörpern zu befördern
  • mit einer Sonde unser Sonnensystem verlassen zu können.

Zum Artikel Zu den Aufgaben

Fundamentale und abgeleitete Kräfte

Grundwissen

  • Man unterscheidet in der Physik zwischen fundamentalen und abgeleiteten Kräften.
  • Fundamentale Kräfte sind z.B. die Gravitationskraft und die elektrische Kraft.
  • Abgeleitete Kräfte sind z.B. die Federkraft, die Reibungskraft und die Auftriebskraft.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Man unterscheidet in der Physik zwischen fundamentalen und abgeleiteten Kräften.
  • Fundamentale Kräfte sind z.B. die Gravitationskraft und die elektrische Kraft.
  • Abgeleitete Kräfte sind z.B. die Federkraft, die Reibungskraft und die Auftriebskraft.

Zum Artikel Zu den Aufgaben