Direkt zum Inhalt
Suchergebnisse 841 - 870 von 892

Lernaufgabe: Kraftwerk Mensch

Weblink

Diese Lernaufgabe der iMINT-Akademie Berlin zum übergreifenden Thema „Verbraucherbildung“ beschäftigt sich mit dem Energiehaushalt des menschlichen Körpers und soll dazu beitragen, dass die Schülerinnen und Schüler die Funktionsweise ihres Körpers besser kennenlernen und den verantwortungsvollen Umgang mit Nahrung erlernen.
Zur Erarbeitung des Themas stehen verschiedene Material- und Hilfekarten zur Verfügung. Als Lernprodukt entsteht ein Lernplakat. Dieser Link führt zum editierbaren Word-Dokument.

Zum externen Weblink
Weblink

Diese Lernaufgabe der iMINT-Akademie Berlin zum übergreifenden Thema „Verbraucherbildung“ beschäftigt sich mit dem Energiehaushalt des menschlichen Körpers und soll dazu beitragen, dass die Schülerinnen und Schüler die Funktionsweise ihres Körpers besser kennenlernen und den verantwortungsvollen Umgang mit Nahrung erlernen.
Zur Erarbeitung des Themas stehen verschiedene Material- und Hilfekarten zur Verfügung. Als Lernprodukt entsteht ein Lernplakat. Dieser Link führt zum editierbaren Word-Dokument.

Zum externen Weblink

Lernaufgabe: Kraftwerk Mensch

Weblink

Diese Lernaufgabe der iMINT-Akademie Berlin zum übergreifenden Thema „Verbraucherbildung“ beschäftigt sich mit dem Energiehaushalt des menschlichen Körpers und soll dazu beitragen, dass die Schülerinnen und Schüler die Funktionsweise ihres Körpers besser kennenlernen und den verantwortungsvollen Umgang mit Nahrung erlernen.
Zur Erarbeitung des Themas stehen verschiedene Material- und Hilfekarten zur Verfügung. Als Lernprodukt entsteht ein Lernplakat.

Zum externen Weblink
Weblink

Diese Lernaufgabe der iMINT-Akademie Berlin zum übergreifenden Thema „Verbraucherbildung“ beschäftigt sich mit dem Energiehaushalt des menschlichen Körpers und soll dazu beitragen, dass die Schülerinnen und Schüler die Funktionsweise ihres Körpers besser kennenlernen und den verantwortungsvollen Umgang mit Nahrung erlernen.
Zur Erarbeitung des Themas stehen verschiedene Material- und Hilfekarten zur Verfügung. Als Lernprodukt entsteht ein Lernplakat.

Zum externen Weblink

Übersicht über die Strömungslehre

Grundwissen

  • Die Strömungslehre beschäftigt sich mit der Bewegung von Flüssigkeiten und Gasen.
  • Dabei unterscheidet man die Bewegung von Flüssigkeiten (Hydrodynamik) und die von Gasen (Aerodynamik).
  • Die Strömungslehre hat vielfältige Anwendungsmöglichkeiten im Alltag.

Zum Artikel
Grundwissen

  • Die Strömungslehre beschäftigt sich mit der Bewegung von Flüssigkeiten und Gasen.
  • Dabei unterscheidet man die Bewegung von Flüssigkeiten (Hydrodynamik) und die von Gasen (Aerodynamik).
  • Die Strömungslehre hat vielfältige Anwendungsmöglichkeiten im Alltag.

Zum Artikel Zu den Aufgaben

2. Newtonsches Gesetz (Aktionsprinzip)

Grundwissen

  • Wirkt auf einen Körper eine resultierende Kraft \(\vec{F}\), so wird der Körper in die Richtung der Kraft beschleunigt.
  • Es gilt \(\vec{F}=m\cdot \vec{a}=m\cdot \frac{\Delta \vec{v}}{\Delta t}\)
  • Die Einheit der Kraft ist 1 Newton: \(\left[ F \right] = \left[ m \right] \cdot \left[ a \right] = 1\,{\rm{kg}} \cdot 1\,\frac{{\rm{m}}}{{{{\rm{s}}^{\rm{2}}}}} = 1\,{\rm{kg}} \cdot \frac{{\rm{m}}}{{{{\rm{s}}^{\rm{2}}}}} = 1\,{\rm{N}}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Wirkt auf einen Körper eine resultierende Kraft \(\vec{F}\), so wird der Körper in die Richtung der Kraft beschleunigt.
  • Es gilt \(\vec{F}=m\cdot \vec{a}=m\cdot \frac{\Delta \vec{v}}{\Delta t}\)
  • Die Einheit der Kraft ist 1 Newton: \(\left[ F \right] = \left[ m \right] \cdot \left[ a \right] = 1\,{\rm{kg}} \cdot 1\,\frac{{\rm{m}}}{{{{\rm{s}}^{\rm{2}}}}} = 1\,{\rm{kg}} \cdot \frac{{\rm{m}}}{{{{\rm{s}}^{\rm{2}}}}} = 1\,{\rm{N}}\)

Zum Artikel Zu den Aufgaben

Größen zur Beschreibung von Strömungen

Grundwissen

  • Zentrale Größen zur Beschreibung von Strömungen sind die Geschwindigkeit\(v\), der Druck \(p\), die Dichte \(\rho\), die Temperatur \(T\) und die dynamische Viskosität \(\eta\).

Zum Artikel
Grundwissen

  • Zentrale Größen zur Beschreibung von Strömungen sind die Geschwindigkeit\(v\), der Druck \(p\), die Dichte \(\rho\), die Temperatur \(T\) und die dynamische Viskosität \(\eta\).

Zum Artikel Zu den Aufgaben

Kontinuitätsgleichungen

Grundwissen

  • Die Größe \(\frac{m}{t}=\rho\cdot v\cdot A\) bzw. infinitesimal \(\frac{dm}{dt}=\dot{m}\) bezeichnet man als Massenstrom.
  • Bei einer stationären Strömung ist wegen der Massenerhaltung der Massenstrom \(\dot{m}=\frac{m}{t}=\rho \cdot A \cdot v\) an allen Querschnittsflächen konstant.
  • Bei inkompressiblen Fluiden ist der Massenstrom \(\dot{m}\) proportional zum Volumenstrom \(\dot{V}\). Der Proportionalitätsfaktor ist die Dichte \(\rho\) des inkompressiblen Fluids.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Größe \(\frac{m}{t}=\rho\cdot v\cdot A\) bzw. infinitesimal \(\frac{dm}{dt}=\dot{m}\) bezeichnet man als Massenstrom.
  • Bei einer stationären Strömung ist wegen der Massenerhaltung der Massenstrom \(\dot{m}=\frac{m}{t}=\rho \cdot A \cdot v\) an allen Querschnittsflächen konstant.
  • Bei inkompressiblen Fluiden ist der Massenstrom \(\dot{m}\) proportional zum Volumenstrom \(\dot{V}\). Der Proportionalitätsfaktor ist die Dichte \(\rho\) des inkompressiblen Fluids.

Zum Artikel Zu den Aufgaben

BERNOULLI-Gleichung

Grundwissen

  • Die BERNOULLI-Gleichung liefert einen Zusammenhang zwischen Strömungsgeschwindigkeit \(v\) und Druck \(p\).
  • Die BERNOULLI-Gleichung bei stationärer, verlustfreier Strömung eines inkompressiblen Fluides ist \(\rho \cdot g \cdot h+\frac{1}{2} \cdot \rho \cdot v^2 + p=\rm{konst.}\).
  • Die Summe der potentiellen Energie, der kinetischen Energie und der Druckenergie (also der verrichteten Arbeit) entlang der Stromröhre ist erhalten.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die BERNOULLI-Gleichung liefert einen Zusammenhang zwischen Strömungsgeschwindigkeit \(v\) und Druck \(p\).
  • Die BERNOULLI-Gleichung bei stationärer, verlustfreier Strömung eines inkompressiblen Fluides ist \(\rho \cdot g \cdot h+\frac{1}{2} \cdot \rho \cdot v^2 + p=\rm{konst.}\).
  • Die Summe der potentiellen Energie, der kinetischen Energie und der Druckenergie (also der verrichteten Arbeit) entlang der Stromröhre ist erhalten.

Zum Artikel Zu den Aufgaben

Größen zur Beschreibung einer Kreisbewegung

Grundwissen

  • Das (Dreh-)Zentrum \(Z\) ist der Mittelpunkt der Kreisbahn.
  • Der Bahnradius \(r\) ist die (konstant bleibende) Entfernung des Körpers zum Drehzentrum.
  • Die Umlaufdauer \(T\) gibt an, wie lange ein Körper für einen vollständigen Umlauf der Kreisbahn benötigt.
  • Die Frequenz \(f\) ist der Kehrwert der Umlaufdauer: \(f=\frac{1}{T}\). Sie gibt an, wie viele Umläufe ein Körper pro Zeiteinheit absolviert.
  • Mit \(s\) bezeichnen wir die Länge der (Bahn-)Strecke, die der Körper seit dem Start der Kreisbewegung auf der Kreisbahn zurückgelegt hat.
  • Mit \(\varphi\) bezeichnen wir die Weite des Drehwinkels, den der Bahnradius seit dem Start der Kreisbewegung überstrichen hat.
  • Winkel werden bei der Beschreibung von Kreisbewegungen meist im Bogenmaß angegeben. Eine volle Umdrehung von \(360^\circ\) entspricht im Bogenmaß dem Wert \(2\pi\)
  • Es gilt \(s = \varphi  \cdot r \quad {\rm{bzw.}} \quad \varphi  = \frac{s}{r}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Das (Dreh-)Zentrum \(Z\) ist der Mittelpunkt der Kreisbahn.
  • Der Bahnradius \(r\) ist die (konstant bleibende) Entfernung des Körpers zum Drehzentrum.
  • Die Umlaufdauer \(T\) gibt an, wie lange ein Körper für einen vollständigen Umlauf der Kreisbahn benötigt.
  • Die Frequenz \(f\) ist der Kehrwert der Umlaufdauer: \(f=\frac{1}{T}\). Sie gibt an, wie viele Umläufe ein Körper pro Zeiteinheit absolviert.
  • Mit \(s\) bezeichnen wir die Länge der (Bahn-)Strecke, die der Körper seit dem Start der Kreisbewegung auf der Kreisbahn zurückgelegt hat.
  • Mit \(\varphi\) bezeichnen wir die Weite des Drehwinkels, den der Bahnradius seit dem Start der Kreisbewegung überstrichen hat.
  • Winkel werden bei der Beschreibung von Kreisbewegungen meist im Bogenmaß angegeben. Eine volle Umdrehung von \(360^\circ\) entspricht im Bogenmaß dem Wert \(2\pi\)
  • Es gilt \(s = \varphi  \cdot r \quad {\rm{bzw.}} \quad \varphi  = \frac{s}{r}\)

Zum Artikel Zu den Aufgaben

Modell einer Loopingbahn (Simulation)

Download ( Simulation )

Diese Simulation zeigt einen einfachen Modellversuch zur Looping-Achterbahn. Um allzu komplizierte Berechnungen zu vermeiden, wird eine Kreisform…

Zum Download
Download ( Simulation )

Diese Simulation zeigt einen einfachen Modellversuch zur Looping-Achterbahn. Um allzu komplizierte Berechnungen zu vermeiden, wird eine Kreisform…

Zum Download

Milchbar (CK-12-Simulation)

Download ( Simulation )

Die Simulation wird zur Verfügung gestellt von https://www.ck12.org. https://www.ck12.org Lizenz:…

Zum Download
Download ( Simulation )

Die Simulation wird zur Verfügung gestellt von https://www.ck12.org. https://www.ck12.org Lizenz:…

Zum Download

Sinken, Schweben, Steigen, Schwimmen

Grundwissen

  • Das Zusammenspiel von Gewichtskraft \(\vec F_{\rm{G}}\) eines Körpers und seiner Auftriebskraft \(\vec F_{\rm{A}}\) im Medium bestimmen, ob der Körper sinkt, schwebt, steigt oder schwimmt.
  • Beim Schwimmen taucht ein Körpers gerade so weit in ein Medium ein, sodass gilt \({F_{\rm{A}}} = {F_{\rm{G}}}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Das Zusammenspiel von Gewichtskraft \(\vec F_{\rm{G}}\) eines Körpers und seiner Auftriebskraft \(\vec F_{\rm{A}}\) im Medium bestimmen, ob der Körper sinkt, schwebt, steigt oder schwimmt.
  • Beim Schwimmen taucht ein Körpers gerade so weit in ein Medium ein, sodass gilt \({F_{\rm{A}}} = {F_{\rm{G}}}\).

Zum Artikel Zu den Aufgaben

Wie kamen die Astronauten von Apollo 11 zum Mond?

Weblink

Interessante Beschreibung des Mondflugs der Saturn V-Rakete.
Themen:
Impuls, Raketengleichung und Drehgeschwindigkeit.

Zum externen Weblink
Weblink

Interessante Beschreibung des Mondflugs der Saturn V-Rakete.
Themen:
Impuls, Raketengleichung und Drehgeschwindigkeit.

Zum externen Weblink

Ausführlicher Unterrichtsgang zu Halbleitern und Elektronik

Weblink

Ausführliche Beschreibung eines Unterrichtsganges zu Halbleitern und Elektronik. Dabei werden Dioden, Transistoren und Sensoren thematisiert. Auch werden viele passende Experimente vorgeschlagen und erläutert und es steht Material zum Download und zum Anpassen bereit.

Zur Übersicht Zum externen Weblink
Weblink

Ausführliche Beschreibung eines Unterrichtsganges zu Halbleitern und Elektronik. Dabei werden Dioden, Transistoren und Sensoren thematisiert. Auch werden viele passende Experimente vorgeschlagen und erläutert und es steht Material zum Download und zum Anpassen bereit.

Zur Übersicht Zum externen Weblink

Luka und das Licht der Zukunft, Band 1

Weblink

Tolle Broschüre Rund um das Thema Licht, speziell der LED. Unterrichtsprojekte, z.B. Bau einfacher LED Lichter. Für Kinder bis 13 Jahren geeignet. Download als pdf auf der o.g. Seite.

Zur Übersicht Zum externen Weblink
Weblink

Tolle Broschüre Rund um das Thema Licht, speziell der LED. Unterrichtsprojekte, z.B. Bau einfacher LED Lichter. Für Kinder bis 13 Jahren geeignet. Download als pdf auf der o.g. Seite.

Zur Übersicht Zum externen Weblink

Halbleiterdiode (Interaktives Tafelbild)

Download ( Tafelbilder )

Das Tafelbild behandelt die Thematik der Halbleiterdiode. Beginnend werden essentielle Fakten der Thematik „Halbleiter“ behandelt.…

Zum Download
Download ( Tafelbilder )

Das Tafelbild behandelt die Thematik der Halbleiterdiode. Beginnend werden essentielle Fakten der Thematik „Halbleiter“ behandelt.…

Zum Download

Vorgänge am pn-Übergang im Stop-Motion-Video

Weblink

Das Video von Prof. Dr. Stefan Heusler, Uni Münster erläutert eindrucksvoll und anschaulich die Vorgänge am PN-Übergang von Halbleitern.

Zur Übersicht Zum externen Weblink
Weblink

Das Video von Prof. Dr. Stefan Heusler, Uni Münster erläutert eindrucksvoll und anschaulich die Vorgänge am PN-Übergang von Halbleitern.

Zur Übersicht Zum externen Weblink

Der Transistor-Effekt (Animation)

Download ( Animationen )

Die Animation zeigt drei Schaltungen eines npn-Transistors, bei denen die Basis genügend positiv gegenüber dem Emitter wird und dadurch ein Strom über…

Zum Download
Download ( Animationen )

Die Animation zeigt drei Schaltungen eines npn-Transistors, bei denen die Basis genügend positiv gegenüber dem Emitter wird und dadurch ein Strom über…

Zum Download

Der Transistor als Schalter - Prinzip (Animation)

Download ( Animationen )

Die Animation zeigt das Prinzip einer Schaltung, in der ein Transistor als Schalter eingesetzt wird.

Zum Download
Download ( Animationen )

Die Animation zeigt das Prinzip einer Schaltung, in der ein Transistor als Schalter eingesetzt wird.

Zum Download

Der Transistor als Schalter - Lichtschranke (Animation)

Download ( Animationen )

Die Animation zeigt das Prinzip einer Schaltung, in der ein Transistor als Schalter für eine Lichtschranke eingesetzt wird.

Zum Download
Download ( Animationen )

Die Animation zeigt das Prinzip einer Schaltung, in der ein Transistor als Schalter für eine Lichtschranke eingesetzt wird.

Zum Download

Der Transistor als Verstärker (Animation)

Download ( Animationen )

Die Animation zeigt das Prinzip einer Schaltung, in der ein Transistor zur Verstärkung eines Signals eingesetzt wird.

Zum Download
Download ( Animationen )

Die Animation zeigt das Prinzip einer Schaltung, in der ein Transistor zur Verstärkung eines Signals eingesetzt wird.

Zum Download

Solarmodule (Animation)

Download ( Animationen )

Die Animation zeigt die Wirkung einer Schutzdiode beim Ausfall einer Solarzelle in einem Solarmodul.

Zum Download
Download ( Animationen )

Die Animation zeigt die Wirkung einer Schutzdiode beim Ausfall einer Solarzelle in einem Solarmodul.

Zum Download

Zauberschaltung - Beobachtung (Animation)

Download ( Animationen )

Die Animation zeigt die Beobachtungen bei der Durchführung des Experimentes zur Zauberschaltung.

Zum Download
Download ( Animationen )

Die Animation zeigt die Beobachtungen bei der Durchführung des Experimentes zur Zauberschaltung.

Zum Download

Zauberschaltung - Erklärung (Animation)

Download ( Animationen )

Die Animation zeigt die Erklärung des Experimentes zur Zauberschaltung.

Zum Download
Download ( Animationen )

Die Animation zeigt die Erklärung des Experimentes zur Zauberschaltung.

Zum Download

p-n-Übergang-Halbleiterdiode - Ventilwirkung (Animation)

Download ( Animationen )

Die Animation zeigt die Ventilwirkung einer Halbleiterdiode in Abhängigkeit von der Polung der angelegten Spannung. Bei korrekter Polung lässt die…

Zum Download
Download ( Animationen )

Die Animation zeigt die Ventilwirkung einer Halbleiterdiode in Abhängigkeit von der Polung der angelegten Spannung. Bei korrekter Polung lässt die…

Zum Download

p-n-Übergang-Halbleiterdiode - Raumladungszone (Animation)

Download ( Animationen )

Die Animation zeigt die Entstehung der Raumladungszone an der Kontaktfläche von p- und n-dotierten Halbleitern. Bringt man einen p- und einen…

Zum Download
Download ( Animationen )

Die Animation zeigt die Entstehung der Raumladungszone an der Kontaktfläche von p- und n-dotierten Halbleitern. Bringt man einen p- und einen…

Zum Download

p-n-Übergang-Halbleiterdiode - Beschaltung (Animation)

Download ( Animationen )

Die Animation zeigt die Beschaltung eines p-n-Übergangs in Sperr- und in Durchlassrichtung. Bei entsprechenden Polungen weitet sich entweder die…

Zum Download
Download ( Animationen )

Die Animation zeigt die Beschaltung eines p-n-Übergangs in Sperr- und in Durchlassrichtung. Bei entsprechenden Polungen weitet sich entweder die…

Zum Download

Einweggleichrichtung (Animation)

Download ( Animationen )

Die Animation zeigt den Aufbau und die Oszilloskopbilder der Schaltung mit einer Diode zur Einweggleichrichtung.

Zum Download
Download ( Animationen )

Die Animation zeigt den Aufbau und die Oszilloskopbilder der Schaltung mit einer Diode zur Einweggleichrichtung.

Zum Download

Doppelweggleichrichtung (Animation)

Download ( Animationen )

Die Animation zeigt den Aufbau und die Oszilloskopbilder der Schaltung mit vier Dioden zur Doppelweggleichrichtung.

Zum Download
Download ( Animationen )

Die Animation zeigt den Aufbau und die Oszilloskopbilder der Schaltung mit vier Dioden zur Doppelweggleichrichtung.

Zum Download

Leuchtdioden (LED) (Animation)

Download ( Animationen )

Die Animation zeigt das Funktionsprinzip von Leuchtdioden (LED).

Zum Download
Download ( Animationen )

Die Animation zeigt das Funktionsprinzip von Leuchtdioden (LED).

Zum Download

Diodeneigenschaften des Transistors (Animation)

Download ( Animationen )

Die Animation zeigt den Aufbau, die Durchführung und die Beobachtungen des Versuchs zum Nachweis der Diodeneigenschaften eines Transistors.

Zum Download
Download ( Animationen )

Die Animation zeigt den Aufbau, die Durchführung und die Beobachtungen des Versuchs zum Nachweis der Diodeneigenschaften eines Transistors.

Zum Download