Direkt zum Inhalt
Suchergebnisse 181 - 210 von 255

Sehvorstellungen im Altertum

Geschichte
Geschichte

Versuche von Grimaldi

Geschichte
Geschichte

Erste Versuche von Young

Geschichte
Geschichte

GALILEI's Beobachtungen mit dem Fernrohr

Geschichte
Geschichte

Die Evolution des Auges

Geschichte
Geschichte

Messung der Lichtgeschwindigkeit durch GALILEI

Geschichte
Geschichte

Messung der Lichtgeschwindigkeit nach RØMER

Geschichte
Geschichte

Messung der Lichtgeschwindigkeit nach FIZEAU

Geschichte
Geschichte

Lochkamera

Geschichte
Geschichte

Multimediale Dokumentation von Schülerergebnissen am Beispiel der farbigen Schatten

Weblink

In dieser Unterrichtseinheit dokumentieren Schülerinnen und Schüler selbstständig und innovativ ihre Arbeitsergebnisse mit der App "Book Creator" und der Tablet-Kamera. Die Unterrichtseinheit kann in alle Fächer / auf alle anderen Themen übertragen werden. Am Beispiel der "farbigen Schatten" wird exemplarisch der Verlauf der Einheit im Fach Physik aufgezeigt.

Zum externen Weblink
Weblink

In dieser Unterrichtseinheit dokumentieren Schülerinnen und Schüler selbstständig und innovativ ihre Arbeitsergebnisse mit der App "Book Creator" und der Tablet-Kamera. Die Unterrichtseinheit kann in alle Fächer / auf alle anderen Themen übertragen werden. Am Beispiel der "farbigen Schatten" wird exemplarisch der Verlauf der Einheit im Fach Physik aufgezeigt.

Zum externen Weblink

Geschichte des Glases

Geschichte
Geschichte

Elektromagnetisches Spektrum

Weblink

Wie entstehen Satellitenbilder? Wie sehen Satelliten die Erde? Die Videos geben eine Einführung darüber, wie Bilder der Erde aus dem Weltraum entstehen und wie Erdbeobachtungssatelliten Unsichtbares für uns Menschen sichtbar machen.

Zum externen Weblink
Weblink

Wie entstehen Satellitenbilder? Wie sehen Satelliten die Erde? Die Videos geben eine Einführung darüber, wie Bilder der Erde aus dem Weltraum entstehen und wie Erdbeobachtungssatelliten Unsichtbares für uns Menschen sichtbar machen.

Zum externen Weblink

Unsichtbares Licht

Weblink

In dieser Unterrichtseinheit zum "unsichtbaren Licht" erfahren die Lernenden, dass man Licht als elektromagnetische Welle verstehen kann und dass das Wellenlängenspektrum dieser Strahlung weit über den sichtbaren Bereich hinausgeht. Die Unterrichtsmaterialien können auf Deutsch und auf Englisch (für den englisch-bilingualen Unterricht) heruntergeladen werden.

Zum externen Weblink
Weblink

In dieser Unterrichtseinheit zum "unsichtbaren Licht" erfahren die Lernenden, dass man Licht als elektromagnetische Welle verstehen kann und dass das Wellenlängenspektrum dieser Strahlung weit über den sichtbaren Bereich hinausgeht. Die Unterrichtsmaterialien können auf Deutsch und auf Englisch (für den englisch-bilingualen Unterricht) heruntergeladen werden.

Zum externen Weblink

Beugung

Grundwissen

  • Beugung ist die Ablenkung einer Welle an einem Hindernis, die nicht durch Brechung, Streuung oder Reflexion verursacht wird.
  • Beugung ist bemerkbar, wenn die Dimension einer Öffnung oder eines Hindernisses in der Größenordnung der Wellenlänge liegt oder kleiner als diese ist.

Zum Artikel
Grundwissen

  • Beugung ist die Ablenkung einer Welle an einem Hindernis, die nicht durch Brechung, Streuung oder Reflexion verursacht wird.
  • Beugung ist bemerkbar, wenn die Dimension einer Öffnung oder eines Hindernisses in der Größenordnung der Wellenlänge liegt oder kleiner als diese ist.

Zum Artikel Zu den Aufgaben

Licht und Farben

Grundwissen

  • Licht hat keine Farbe.
  • Wenn Licht aber auf die Netzhaut im Auge trifft, senden die verschiedenen lichtempfindlichen Zapfen elektrische Impulse an das Gehirn. Dort werden diese Impulse verarbeitet und im Gehirn wird ein Farbeindruck erzeugt.
  • Licht aus verschiedenen Bereichen des Lichtbündels, das nach der Zerlegung von Sonnenlicht entsteht, erzeugt jeweils einen anderen Farbeindruck. Wir unterscheiden das Licht deshalb nach diesem Farbeindruck und bezeichnen z.B. Licht aus dem linken Bereich des Lichtbündels als "Licht der Spektralfarbe Rot" oder kurz als "rotes Licht".
  • Ist Licht verschiedener Spektralfarben gemischt, dann kann dieses Licht Farbeindrücke erzeugen, die mit Licht einer einzelnen Spektralfarbe nicht erzeugt werden können.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Licht hat keine Farbe.
  • Wenn Licht aber auf die Netzhaut im Auge trifft, senden die verschiedenen lichtempfindlichen Zapfen elektrische Impulse an das Gehirn. Dort werden diese Impulse verarbeitet und im Gehirn wird ein Farbeindruck erzeugt.
  • Licht aus verschiedenen Bereichen des Lichtbündels, das nach der Zerlegung von Sonnenlicht entsteht, erzeugt jeweils einen anderen Farbeindruck. Wir unterscheiden das Licht deshalb nach diesem Farbeindruck und bezeichnen z.B. Licht aus dem linken Bereich des Lichtbündels als "Licht der Spektralfarbe Rot" oder kurz als "rotes Licht".
  • Ist Licht verschiedener Spektralfarben gemischt, dann kann dieses Licht Farbeindrücke erzeugen, die mit Licht einer einzelnen Spektralfarbe nicht erzeugt werden können.

Zum Artikel Zu den Aufgaben

Das menschliche Auge - Akkommodation und Sehfehler

Grundwissen

  • Als Akkommodation bezeichnet man die Änderung der Brennkraft des Auges, um Objekte in unterschiedlichen Entfernungen scharf sehen zu können.
  • Bei Kurzsichtigkeit ist die Augenlinse zu stark gekrümmt, entfernte Gegenstände werden kurz vor der Netzhaut scharf abgebildet.
  • Bei Weitsichtigkeit ist die Augenlinse nicht stark genug gekrümmt, nahe Gegenstände werden kurz hinter der Netzhaut scharf abgebildet.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Als Akkommodation bezeichnet man die Änderung der Brennkraft des Auges, um Objekte in unterschiedlichen Entfernungen scharf sehen zu können.
  • Bei Kurzsichtigkeit ist die Augenlinse zu stark gekrümmt, entfernte Gegenstände werden kurz vor der Netzhaut scharf abgebildet.
  • Bei Weitsichtigkeit ist die Augenlinse nicht stark genug gekrümmt, nahe Gegenstände werden kurz hinter der Netzhaut scharf abgebildet.

Zum Artikel Zu den Aufgaben

Video zu den Chladnischen Klangfiguren

Weblink

Dieses Video zeigt Chladnische Klangfiguren, die bei der Anregung einer mit Sand bestreuten Metallplatte durch einen Geigenbogen entstehen. Das Video wurde von der Ecole Science als Open Educational Resource (OER) veröffentlicht.

Zur Übersicht Zum externen Weblink
Weblink

Dieses Video zeigt Chladnische Klangfiguren, die bei der Anregung einer mit Sand bestreuten Metallplatte durch einen Geigenbogen entstehen. Das Video wurde von der Ecole Science als Open Educational Resource (OER) veröffentlicht.

Zur Übersicht Zum externen Weblink

Sammlung interaktiver Experimente zum Franck-Hertz-Versuch

Weblink

In dieser Sammlung an interaktiven Bildschirmexperimenten (IBE) könnt ihr den Franck-Hertz-Versuch selbst und interaktiv durchführen. In verschiedenen Experimenten und Messaufbauten könnt ihr von zuhause den Versuch sowohl mit Quecksilber als auch mit Neon durchführen und auswerten.
Zwischen den Experimenten könnt ihr durch Anklicken der Themen oder mit den Pfeilen unten rechts und links auf der Seite navigieren. Diese Experimente stammen von der AG Didaktik der Physik der Universität Berlin.

Zur Übersicht Zum externen Weblink
Weblink

In dieser Sammlung an interaktiven Bildschirmexperimenten (IBE) könnt ihr den Franck-Hertz-Versuch selbst und interaktiv durchführen. In verschiedenen Experimenten und Messaufbauten könnt ihr von zuhause den Versuch sowohl mit Quecksilber als auch mit Neon durchführen und auswerten.
Zwischen den Experimenten könnt ihr durch Anklicken der Themen oder mit den Pfeilen unten rechts und links auf der Seite navigieren. Diese Experimente stammen von der AG Didaktik der Physik der Universität Berlin.

Zur Übersicht Zum externen Weblink

Sammlung interaktiver Experimente zur Röntgenstrahlung

Weblink

Diese Sammlung an interaktiven Bildschirmexperimenten (IBE) behandelt das Thema der Röntgenstrahlung. Ihr lernt den Aufbau und die Funktionsweise eines Röntgengeräts kennen, untersucht das Modellexperiment der Bragg-Reflexion und könnt zentrale Experimente, wie die Bestimmung der Planckkonstante mit dem Röntgengerät interaktiv durchführen.
Zwischen den Experimenten könnt ihr durch Anklicken der Themen oder mit den Pfeilen unten rechts und links auf der Seite navigieren. Diese Experimente stammen von der AG Didaktik der Physik der Universität Berlin.

Zur Übersicht Zum externen Weblink
Weblink

Diese Sammlung an interaktiven Bildschirmexperimenten (IBE) behandelt das Thema der Röntgenstrahlung. Ihr lernt den Aufbau und die Funktionsweise eines Röntgengeräts kennen, untersucht das Modellexperiment der Bragg-Reflexion und könnt zentrale Experimente, wie die Bestimmung der Planckkonstante mit dem Röntgengerät interaktiv durchführen.
Zwischen den Experimenten könnt ihr durch Anklicken der Themen oder mit den Pfeilen unten rechts und links auf der Seite navigieren. Diese Experimente stammen von der AG Didaktik der Physik der Universität Berlin.

Zur Übersicht Zum externen Weblink

Video zum Linienspektrum von Argon

Weblink

Dieses Video zeigt ein Experiment zur Beobachtung des Linienspektrums einer Argon-Gasentladungslampe. Das Video wurde von der Ecole Science als Open Educational Resource (OER) veröffentlicht.

Zur Übersicht Zum externen Weblink
Weblink

Dieses Video zeigt ein Experiment zur Beobachtung des Linienspektrums einer Argon-Gasentladungslampe. Das Video wurde von der Ecole Science als Open Educational Resource (OER) veröffentlicht.

Zur Übersicht Zum externen Weblink

Video zum Linienspektrum von Kohlenstoffdioxid

Weblink

Dieses Video zeigt ein Experiment zur Beobachtung des Linienspektrums einer Kohlenstoffdioxid-Gasentladungslampe. Das Video wurde von der Ecole Science als Open Educational Resource (OER) veröffentlicht.

Zur Übersicht Zum externen Weblink
Weblink

Dieses Video zeigt ein Experiment zur Beobachtung des Linienspektrums einer Kohlenstoffdioxid-Gasentladungslampe. Das Video wurde von der Ecole Science als Open Educational Resource (OER) veröffentlicht.

Zur Übersicht Zum externen Weblink

Video zum Linienspektrum von Wasserstoff

Weblink

Dieses Video zeigt ein Experiment zur Beobachtung des Linienspektrums einer Wasserstoff-Gasentladungslampe. Das Video wurde von der Ecole Science als Open Educational Resource (OER) veröffentlicht.

Zur Übersicht Zum externen Weblink
Weblink

Dieses Video zeigt ein Experiment zur Beobachtung des Linienspektrums einer Wasserstoff-Gasentladungslampe. Das Video wurde von der Ecole Science als Open Educational Resource (OER) veröffentlicht.

Zur Übersicht Zum externen Weblink

Eine kurze Geschichte der Streuversuche

Weblink

Auf der sehr gut verständlichen und hervorragend gestalteten Site: "Welt der Physik" der Deutschen Physikalischen Gesellschaft (DPG) kannst du einen Übersichtsartikel über die Geschichte der Streuversuche nachlesen.

Zur Übersicht Zum externen Weblink
Weblink

Auf der sehr gut verständlichen und hervorragend gestalteten Site: "Welt der Physik" der Deutschen Physikalischen Gesellschaft (DPG) kannst du einen Übersichtsartikel über die Geschichte der Streuversuche nachlesen.

Zur Übersicht Zum externen Weblink

1. Platz LEIFIphysik: Quantenphysik: Der Tunneleffekt

Weblink

Ein filmischer Beitrag von "Studio 16" vom Carl-Friedrich-von-Weizsäcker-Gymnasium Barmstedt/Rantzau für den LEIFIphysik-Videowettbewerb.

Zur Übersicht Zum externen Weblink
Weblink

Ein filmischer Beitrag von "Studio 16" vom Carl-Friedrich-von-Weizsäcker-Gymnasium Barmstedt/Rantzau für den LEIFIphysik-Videowettbewerb.

Zur Übersicht Zum externen Weblink

Atomphysik für die Sekundarstufe I

Weblink

Eine 9 Stunden umfassende Unterrichtseinheit zur Atomvorstellung für die Sekundarstufe I. Sie wurde am Faust-Gymnasium in Staufen entwickelt und in zehnten Klassen erprobt.

Zur Übersicht Zum externen Weblink
Weblink

Eine 9 Stunden umfassende Unterrichtseinheit zur Atomvorstellung für die Sekundarstufe I. Sie wurde am Faust-Gymnasium in Staufen entwickelt und in zehnten Klassen erprobt.

Zur Übersicht Zum externen Weblink

Potentialtopf-Modell

Weblink

Dieses downloadbare (Windows-)Programm zeigt, wie sich ein Elektron verhält, das in einen sehr kleinen würfelförmigen Kasten eingesperrt wird.
In der Quantenphysik wird dieser Kasten als dreidimensionaler Potentialtopf interpretiert, in dem das Elektron nur ganz bestimmte Energieniveaus annehmen kann. Außerdem darf das Elektron sich nur in bestimmten Raumbereichen aufhalten. Etwas physikalischer formuliert: Die Energie des Elektrons innerhalb des Potentialtopfes ist gequantelt und sein Aufenthaltsbereich ist auf Orbitale beschränkt. Dieses Verhalten des Elektrons ergibt sich aus der Schrödinger-Gleichung. Die Simulation erlaubt die Eingabe verschiedener Quantenzahlen. Die Aufenthaltswahrscheinlichkeit des Elektrons (Orbital) wird durch die Dichte von Punktewolken dargestellt. Der Würfel lässt sich drehen, so dass die Lage der einzelnen Orbitale gut sichtbar wird. Außerdem kann man die Energie des Elektrons bei vorgegebener Größe des Kastens ablesen.

Zum externen Weblink
Weblink

Dieses downloadbare (Windows-)Programm zeigt, wie sich ein Elektron verhält, das in einen sehr kleinen würfelförmigen Kasten eingesperrt wird.
In der Quantenphysik wird dieser Kasten als dreidimensionaler Potentialtopf interpretiert, in dem das Elektron nur ganz bestimmte Energieniveaus annehmen kann. Außerdem darf das Elektron sich nur in bestimmten Raumbereichen aufhalten. Etwas physikalischer formuliert: Die Energie des Elektrons innerhalb des Potentialtopfes ist gequantelt und sein Aufenthaltsbereich ist auf Orbitale beschränkt. Dieses Verhalten des Elektrons ergibt sich aus der Schrödinger-Gleichung. Die Simulation erlaubt die Eingabe verschiedener Quantenzahlen. Die Aufenthaltswahrscheinlichkeit des Elektrons (Orbital) wird durch die Dichte von Punktewolken dargestellt. Der Würfel lässt sich drehen, so dass die Lage der einzelnen Orbitale gut sichtbar wird. Außerdem kann man die Energie des Elektrons bei vorgegebener Größe des Kastens ablesen.

Zum externen Weblink

Tunneleffekt

Weblink

Dieses downloadbare (Windows-)Programm löst die eindimensionale, stationäre Schrödingergleichung für den Aufenthalt eines Elektrons in einem Linearen Potentialtopf auf numerischem Weg.
Dabei lassen sich drei Szenarien einstellen:
1. Linearer Potentialtopf mit unendlich hohen Wänden
2. Linearer Potentialtopf mit einer niedrigen, aber breiten Wand
3. Linearer Potentialtopf mit einer niedrigen und schmalen Wand.
Die Höhe (Potentielle Energie) und die Breite der Wand lassen sich bei 2. und 3. variieren.
Durch Eingabe der Gesamtenergie des Elektrons lassen sich Wellenfunktionen finden, die innerhalb der Wand gegen Null konvergieren. Nur diese Wellenfunktionen sind physikalisch sinnvoll und beschreiben das Eindringen in die Wand bzw. das Durchtunneln der Wand im Sinne des quantenmechanischen Effekts richtig.

Zum externen Weblink
Weblink

Dieses downloadbare (Windows-)Programm löst die eindimensionale, stationäre Schrödingergleichung für den Aufenthalt eines Elektrons in einem Linearen Potentialtopf auf numerischem Weg.
Dabei lassen sich drei Szenarien einstellen:
1. Linearer Potentialtopf mit unendlich hohen Wänden
2. Linearer Potentialtopf mit einer niedrigen, aber breiten Wand
3. Linearer Potentialtopf mit einer niedrigen und schmalen Wand.
Die Höhe (Potentielle Energie) und die Breite der Wand lassen sich bei 2. und 3. variieren.
Durch Eingabe der Gesamtenergie des Elektrons lassen sich Wellenfunktionen finden, die innerhalb der Wand gegen Null konvergieren. Nur diese Wellenfunktionen sind physikalisch sinnvoll und beschreiben das Eindringen in die Wand bzw. das Durchtunneln der Wand im Sinne des quantenmechanischen Effekts richtig.

Zum externen Weblink

Schrödingergleichung und H-Atom

Weblink

Dieses downloadbare (Windows-)Programm löst die stationäre Schrödingergleichung des radialen Anteils der Wasserstoffwellenfunktion auf numerischen Weg und stellt die Wahrscheinlichkeitsdichten, Aufenthaltswahrscheinlichkeiten und Orbitale des Elektrons grafisch dar. Der Wert für die Gesamtenergie des Elektrons kann vom Anwender mit Hilfe von Schiebereglern beliebig gewählt werden. Der Drehimpuls darf die Werte 0,1,2,3 und 4 annehmen. Dass Programm liefert dann durch Lösen der Differentialgleichung eine entsprechende Wellenfunktion. Aber nur bei wenigen, ganz speziellen Energiewerten ergeben sich Funktionen, die gegen Null konvergieren und damit physikalisch sinnvolle Lösungen der Differentialgleichung darstellen. Diese Energiewerte werden Eigenwerte der Differentialgleichung genannt und entsprechen den vom Bohrschen Atommodell bekannten Energien des Wasserstoff-Termschemas.

Zum externen Weblink
Weblink

Dieses downloadbare (Windows-)Programm löst die stationäre Schrödingergleichung des radialen Anteils der Wasserstoffwellenfunktion auf numerischen Weg und stellt die Wahrscheinlichkeitsdichten, Aufenthaltswahrscheinlichkeiten und Orbitale des Elektrons grafisch dar. Der Wert für die Gesamtenergie des Elektrons kann vom Anwender mit Hilfe von Schiebereglern beliebig gewählt werden. Der Drehimpuls darf die Werte 0,1,2,3 und 4 annehmen. Dass Programm liefert dann durch Lösen der Differentialgleichung eine entsprechende Wellenfunktion. Aber nur bei wenigen, ganz speziellen Energiewerten ergeben sich Funktionen, die gegen Null konvergieren und damit physikalisch sinnvolle Lösungen der Differentialgleichung darstellen. Diese Energiewerte werden Eigenwerte der Differentialgleichung genannt und entsprechen den vom Bohrschen Atommodell bekannten Energien des Wasserstoff-Termschemas.

Zum externen Weblink

Röntgenspektren

Weblink

Die Strahlung von Röntgenröhren kann sehr unterschiedlich ausfallen. Die Spektren sind abhängig vom Anodenmaterial der Röhre, der Beschleunigungsspannung, dem Röhrenstrom und den verwendeten Filtermaterialien.

Dieses downloadbare (Windows-)Programm berechnet Röntgenspektren unter Berücksichtigung all dieser Faktoren. Dabei werden die Spektren so dargestellt, als wären sie durch die Drehkristallmethode aufgenommen worden. Das Spektrum erster Ordnung wird bei diesem Verfahren stets von den Spektren höherer Beugungsordnungen überlagert. Das Programm ermöglicht aber auch die Übertragung der Drehkristall-Spektren auf eine Wellenlängen- oder Energieskala, wobei die höheren Beugungsordnungen dann unberücksichtigt bleiben.

Zur Übersicht Zum externen Weblink
Weblink

Die Strahlung von Röntgenröhren kann sehr unterschiedlich ausfallen. Die Spektren sind abhängig vom Anodenmaterial der Röhre, der Beschleunigungsspannung, dem Röhrenstrom und den verwendeten Filtermaterialien.

Dieses downloadbare (Windows-)Programm berechnet Röntgenspektren unter Berücksichtigung all dieser Faktoren. Dabei werden die Spektren so dargestellt, als wären sie durch die Drehkristallmethode aufgenommen worden. Das Spektrum erster Ordnung wird bei diesem Verfahren stets von den Spektren höherer Beugungsordnungen überlagert. Das Programm ermöglicht aber auch die Übertragung der Drehkristall-Spektren auf eine Wellenlängen- oder Energieskala, wobei die höheren Beugungsordnungen dann unberücksichtigt bleiben.

Zur Übersicht Zum externen Weblink

Schrödingers Katze flippt aus

Weblink

Katze und Uhu erklären die grundlegenden Quanteneffekte. Der Helmholtz-Wissenschaftscomic erscheint einmal im Monat.

Zur Übersicht Zum externen Weblink
Weblink

Katze und Uhu erklären die grundlegenden Quanteneffekte. Der Helmholtz-Wissenschaftscomic erscheint einmal im Monat.

Zur Übersicht Zum externen Weblink