Direkt zum Inhalt
Suchergebnisse 181 - 210 von 2589

Schallgeschwindigkeit in Kupfer

Aufgabe ( Übungsaufgaben )

Ein Kupferstab von \(56\,\rm{cm}\) Länge wird in seiner Mitte fest eingeklemmt. Durch Reiben in seiner Längsrichtung wird er zum Schwingen angeregt,…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Ein Kupferstab von \(56\,\rm{cm}\) Länge wird in seiner Mitte fest eingeklemmt. Durch Reiben in seiner Längsrichtung wird er zum Schwingen angeregt,…

Zur Aufgabe

Schallgeschwindigkeit in Stahl

Aufgabe ( Übungsaufgaben )

Ein Stahlstab von \(60{,}0\,\rm{cm}\) Länge wird an seinen Enden fest eingeklemmt. Durch Reiben in seiner Längsrichtung wird er zum Schwingen…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Ein Stahlstab von \(60{,}0\,\rm{cm}\) Länge wird an seinen Enden fest eingeklemmt. Durch Reiben in seiner Längsrichtung wird er zum Schwingen…

Zur Aufgabe

Aufstellen der Wellenfunktion 4

Aufgabe ( Übungsaufgaben )

Eine harmonische Schwingung mit dem Zeit-Elongation-Term \(y(t) = 1{,}0 \cdot 10^{ - 2}\,{\rm{m}} \cdot \sin \left( \frac{0{,}5\,\pi }{{\rm{s}}} …

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Eine harmonische Schwingung mit dem Zeit-Elongation-Term \(y(t) = 1{,}0 \cdot 10^{ - 2}\,{\rm{m}} \cdot \sin \left( \frac{0{,}5\,\pi }{{\rm{s}}} …

Zur Aufgabe

Reflexion mit der Slinky-Feder

Versuche

  • Mit einer Slinky-Feder kannst du die Reflexion von Transversal- und von Longitudinalwellen an festen und an losen Enden demonstrieren.

Zum Artikel
Versuche

  • Mit einer Slinky-Feder kannst du die Reflexion von Transversal- und von Longitudinalwellen an festen und an losen Enden demonstrieren.

Zum Artikel Zu den Aufgaben

Transmission und Reflexion

Grundwissen

  • Beim Übergang einer Welle vom dünneren zum dichteren Medium läuft die ursprüngliche Welle mit kleinerer Amplitude und kleinerer Wellenlänge weiter. Zusätzlich läuft eine zweite Welle entgegen der ursprünglichen Ausbreitungsrichtung mit kleinerer Amplitude, aber gleicher Wellenlänge zurück. Dabei wird ein Wellenberg zu einem Wellental und ein Wellental zu einem Wellenberg (Reflexion am festen Ende, Phasensprung von \(\pi\)).
  • Beim Übergang einer Welle vom dichteren zum dünneren Medium  läuft die ursprüngliche Welle mit veränderter Amplitude und größerer Wellenlänge weiter. Zusätzlich läuft eine zweite Welle entgegen der ursprünglichen Ausbreitungsrichtung mit kleinerer Amplitude, aber gleicher Wellenlänge zurück. Dabei bleibt ein Wellenberg ein Wellenberg und ein  Wellental ein Wellental (Reflexion am losen Ende, kein Phasensprung).

Zum Artikel
Grundwissen

  • Beim Übergang einer Welle vom dünneren zum dichteren Medium läuft die ursprüngliche Welle mit kleinerer Amplitude und kleinerer Wellenlänge weiter. Zusätzlich läuft eine zweite Welle entgegen der ursprünglichen Ausbreitungsrichtung mit kleinerer Amplitude, aber gleicher Wellenlänge zurück. Dabei wird ein Wellenberg zu einem Wellental und ein Wellental zu einem Wellenberg (Reflexion am festen Ende, Phasensprung von \(\pi\)).
  • Beim Übergang einer Welle vom dichteren zum dünneren Medium  läuft die ursprüngliche Welle mit veränderter Amplitude und größerer Wellenlänge weiter. Zusätzlich läuft eine zweite Welle entgegen der ursprünglichen Ausbreitungsrichtung mit kleinerer Amplitude, aber gleicher Wellenlänge zurück. Dabei bleibt ein Wellenberg ein Wellenberg und ein  Wellental ein Wellental (Reflexion am losen Ende, kein Phasensprung).

Zum Artikel Zu den Aufgaben

Rund um den geschlossenen Stromkreis

Aufgabe ( Quiz )
Aufgabe ( Quiz )

Rund um die Ein-Aus-Schaltung

Aufgabe ( Quiz )
Aufgabe ( Quiz )

Rund um die UND-Schaltung

Aufgabe ( Quiz )
Aufgabe ( Quiz )

Rund um die ODER-Schaltung

Aufgabe ( Quiz )
Aufgabe ( Quiz )

Rund um die Umschaltung

Aufgabe ( Quiz )
Aufgabe ( Quiz )

MILLIKAN-Versuch - Schwebe-Fall-Methode ohne CUNNINGHAM-Korrektur (Simulation)

Versuche

Mit Hilfe dieser Simulation kannst du dir selbstständig die Ergebnisse des MILLIKAN-Versuchs erarbeiten.

Zum Artikel Zu den Aufgaben
Versuche

Mit Hilfe dieser Simulation kannst du dir selbstständig die Ergebnisse des MILLIKAN-Versuchs erarbeiten.

Zum Artikel Zu den Aufgaben

MILLIKAN-Versuch - Steige-Fall-Methode ohne CUNNINGHAM-Korrektur (Simulation)

Versuche

Mit Hilfe dieser Simulation kannst du dir selbstständig die Ergebnisse des MILLIKAN-Versuchs erarbeiten.

Zum Artikel Zu den Aufgaben
Versuche

Mit Hilfe dieser Simulation kannst du dir selbstständig die Ergebnisse des MILLIKAN-Versuchs erarbeiten.

Zum Artikel Zu den Aufgaben

MILLIKAN-Versuch (Steige-Fall-Methode)

Aufgabe ( Übungsaufgaben )

Legt man an zwei Kondensatorplatten, deren Abstand \(1{,}00\,\rm{cm}\) ist, eine Spannung von \(31{,}5\,\rm{V}\) an, so zwingt man dadurch ein…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Legt man an zwei Kondensatorplatten, deren Abstand \(1{,}00\,\rm{cm}\) ist, eine Spannung von \(31{,}5\,\rm{V}\) an, so zwingt man dadurch ein…

Zur Aufgabe

Eine Variante des MILLIKAN-Versuchs

Aufgabe ( Übungsaufgaben )

Ein Öltropfen der Dichte \(0{,}92 \cdot 10^3\,\frac{\rm{kg}}{\rm{m}^3}\) fällt unter dem Einfluss der Schwerkraft in Luft (Viskosität \(1{,}83 \cdot…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Ein Öltropfen der Dichte \(0{,}92 \cdot 10^3\,\frac{\rm{kg}}{\rm{m}^3}\) fällt unter dem Einfluss der Schwerkraft in Luft (Viskosität \(1{,}83 \cdot…

Zur Aufgabe

MILLIKAN-Versuch - Steige-Sink-Methode ohne CUNNINGHAM-Korrektur (Simulation)

Versuche

Mit Hilfe dieser Simulation kannst du dir selbstständig die Ergebnisse des MILLIKAN-Versuchs erarbeiten.

Zum Artikel Zu den Aufgaben
Versuche

Mit Hilfe dieser Simulation kannst du dir selbstständig die Ergebnisse des MILLIKAN-Versuchs erarbeiten.

Zum Artikel Zu den Aufgaben

Aussagen zur Reihenschaltung beurteilen

Aufgabe ( Übungsaufgaben )

a) Joachim Herz Stiftung Abb. 1 Schaltung vorher und nachherAn…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

a) Joachim Herz Stiftung Abb. 1 Schaltung vorher und nachherAn…

Zur Aufgabe

Quiz zum MILLIKAN-Versuch (Schwebemethode)

Aufgabe ( Quiz )
Aufgabe ( Quiz )

Quiz zum MILLIKAN-Versuch (Schwebe-Fall-Methode)

Aufgabe ( Quiz )
Aufgabe ( Quiz )

Quiz zum MILLIKAN-Versuch (Steige-Fall-Methode)

Aufgabe ( Quiz )
Aufgabe ( Quiz )

Quiz zum MILLIKAN-Versuch (Steige-Sink-Methode)

Aufgabe ( Quiz )
Aufgabe ( Quiz )

Magnetische Flussdichte und die Maßeinheit Tesla

Grundwissen

  • Befindet sich ein gerader Leiter der Länge \(l\), der von einem Strom der Stärke \(I\) durchflossen wird, senkrecht zu den Feldlinien in einem magnetischen Feld, und wirkt auf diesen Leiter eine magnetische Kraft vom Betrag \(F_{\rm{mag}}\), dann definieren wir die magnetische Flussdichte \(B\) des magnetischen Feldes am Ort des Leiters durch \(B := \frac{F_{\rm{mag}}}{l \cdot I}\).
  • Die magnetische Flussdichte \(B\) ist ein Maß für "die Stärke" eines magnetischen Feldes.
  • Das Formelzeichen für die magnetische Flussdichte ist \(B\), die Maßeinheit der magnetischen Flussdichte ist \(1\,\rm{T}\) (Tesla).

Zum Artikel
Grundwissen

  • Befindet sich ein gerader Leiter der Länge \(l\), der von einem Strom der Stärke \(I\) durchflossen wird, senkrecht zu den Feldlinien in einem magnetischen Feld, und wirkt auf diesen Leiter eine magnetische Kraft vom Betrag \(F_{\rm{mag}}\), dann definieren wir die magnetische Flussdichte \(B\) des magnetischen Feldes am Ort des Leiters durch \(B := \frac{F_{\rm{mag}}}{l \cdot I}\).
  • Die magnetische Flussdichte \(B\) ist ein Maß für "die Stärke" eines magnetischen Feldes.
  • Das Formelzeichen für die magnetische Flussdichte ist \(B\), die Maßeinheit der magnetischen Flussdichte ist \(1\,\rm{T}\) (Tesla).

Zum Artikel Zu den Aufgaben

Quiz zur Formel für die magnetische Flussdichte im Innenraum von luftgefüllten Zylinderspulen

Aufgabe ( Quiz )
Aufgabe ( Quiz )

Magnetfeld von langen Zylinderspulen (qualitativ)

Versuche

  • Demonstration des Magnetfelds (insbesonder im Innenraum) von langen Zylinderspulen

Zum Artikel
Versuche

  • Demonstration des Magnetfelds (insbesonder im Innenraum) von langen Zylinderspulen

Zum Artikel Zu den Aufgaben

Quiz zur Formel für die magnetische Flussdichte in der Umgebung von geraden Leitern

Aufgabe ( Quiz )
Aufgabe ( Quiz )

Quiz zur Formel für die magnetische Flussdichte in der Mittelebene von HELMHOLTZ-Spulen

Aufgabe ( Quiz )
Aufgabe ( Quiz )

Rund um die Wechselschaltung

Aufgabe ( Quiz )
Aufgabe ( Quiz )

Rund um die Kreuzschaltung

Aufgabe ( Quiz )
Aufgabe ( Quiz )

Wasserparabel (IBE der FU Berlin)

Versuche
Versuche

Erklärquiz: Gefahr durch Strom und Körperwiderstand

Aufgabe ( Quiz )
Aufgabe ( Quiz )

Wurf nach oben mit Anfangshöhe

Grundwissen

  • Als Wurf nach oben mit Anfangshöhe bezeichnen wir die Bewegung eines Körpers, der aus einer Anfangshöhe \(h\) mit einer Anfangsgeschwindigkeit \(\vec v_0\) "senkrecht nach oben geworfen" wird.
  • Der Körper führt dann eine gleichmäßig beschleunigte Bewegung mit Anfangsgeschwindigkeit aus.
  • Für die Steigzeit des Körpers gilt \(t_{\rm{S}}=\frac{v_{y,0}}{g}\), für die Wurfhöhe \({y_{\rm{S}}} = \frac{{v_{y,0}^2}}{{2 \cdot g}} + h\).
  • Für die Wurfzeit des Körpers gilt \(t_{\rm{W}} = \frac{v_{y,0} + \sqrt{{v_{y,0}}^2 + 2 \cdot g \cdot h}}{g}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Als Wurf nach oben mit Anfangshöhe bezeichnen wir die Bewegung eines Körpers, der aus einer Anfangshöhe \(h\) mit einer Anfangsgeschwindigkeit \(\vec v_0\) "senkrecht nach oben geworfen" wird.
  • Der Körper führt dann eine gleichmäßig beschleunigte Bewegung mit Anfangsgeschwindigkeit aus.
  • Für die Steigzeit des Körpers gilt \(t_{\rm{S}}=\frac{v_{y,0}}{g}\), für die Wurfhöhe \({y_{\rm{S}}} = \frac{{v_{y,0}^2}}{{2 \cdot g}} + h\).
  • Für die Wurfzeit des Körpers gilt \(t_{\rm{W}} = \frac{v_{y,0} + \sqrt{{v_{y,0}}^2 + 2 \cdot g \cdot h}}{g}\).

Zum Artikel Zu den Aufgaben