Direkt zum Inhalt
Suchergebnisse 61 - 90 von 107

Video zum Magnetismus in der Relativitätstheorie

Weblink

Dieses Video erklärt, wie sich der Magnetismus aus der relativistischen Betrachtung von bewegten Ladungen ergibt und zeigt einige Beispiele und Anwendungen für die Wirkung von Magnetismus auf bewegte Ladungen.
Das Video stammt von Prof. André Bresges, Professor für Physik an der Universität zu Köln.

Zur Übersicht Zum externen Weblink
Weblink

Dieses Video erklärt, wie sich der Magnetismus aus der relativistischen Betrachtung von bewegten Ladungen ergibt und zeigt einige Beispiele und Anwendungen für die Wirkung von Magnetismus auf bewegte Ladungen.
Das Video stammt von Prof. André Bresges, Professor für Physik an der Universität zu Köln.

Zur Übersicht Zum externen Weblink

Lernaufgabe: Fernseher-Testwochen

Weblink

Diese Lernaufgabe der IMINT-Akademie Berlin zum übergreifenden Thema „Verbraucherbildung“ beschäftigt sich mit Fernsehern. Mit Hilfe eines Werbeflyers, eines Experiments zum Auflösungsvermögen des Auges und anderen Materialien kommen die Schülerinnen und Schüler zu einer begründeten Entscheidung, ob sie ein selbst gewähltes Gerät kaufen würden oder nicht. Die für eine umfassende Bewertung bzw. Beurteilung erforderlichen Kriterien (fachliche und außerfachliche) finden die Lernenden selbst (oder nutzen eine Hilfe) und lernen, Argumente abzuwägen und abschließend zu urteilen. Der methodische Fokus liegt in der Förderung der Bewertungskompetenz der Schülerinnen und Schüler.
Als Lernprodukt entsteht ein schriftlicher Text auf einem Feedbackformular, die die begründete und kriterienorientierte Entscheidung darlegt.
Dieses OER-Material zum Bearbeiten und weiteres Material gibt es unter:
https://bildungsserver.berlin-brandenburg.de/unterricht/faecher/mathematik-naturwissenschaften/mint/i-mint-akademie/weiterfuehrende-schulen/fachset-physik

Zur Übersicht Zum externen Weblink
Weblink

Diese Lernaufgabe der IMINT-Akademie Berlin zum übergreifenden Thema „Verbraucherbildung“ beschäftigt sich mit Fernsehern. Mit Hilfe eines Werbeflyers, eines Experiments zum Auflösungsvermögen des Auges und anderen Materialien kommen die Schülerinnen und Schüler zu einer begründeten Entscheidung, ob sie ein selbst gewähltes Gerät kaufen würden oder nicht. Die für eine umfassende Bewertung bzw. Beurteilung erforderlichen Kriterien (fachliche und außerfachliche) finden die Lernenden selbst (oder nutzen eine Hilfe) und lernen, Argumente abzuwägen und abschließend zu urteilen. Der methodische Fokus liegt in der Förderung der Bewertungskompetenz der Schülerinnen und Schüler.
Als Lernprodukt entsteht ein schriftlicher Text auf einem Feedbackformular, die die begründete und kriterienorientierte Entscheidung darlegt.
Dieses OER-Material zum Bearbeiten und weiteres Material gibt es unter:
https://bildungsserver.berlin-brandenburg.de/unterricht/faecher/mathematik-naturwissenschaften/mint/i-mint-akademie/weiterfuehrende-schulen/fachset-physik

Zur Übersicht Zum externen Weblink

Lernaufgabe: Fernseher-Testwochen

Weblink

Diese Lernaufgabe der iMINT-Akademie Berlin zum übergreifenden Thema „Verbraucherbildung“ beschäftigt sich mit Fernsehern. Mit Hilfe eines Werbeflyers, eines Experiments zum Auflösungsvermögen des Auges und anderen Materialien kommen die Schülerinnen und Schüler zu einer begründeten Entscheidung, ob sie ein selbst gewähltes Gerät kaufen würden oder nicht. Die für eine umfassende Bewertung bzw. Beurteilung erforderlichen Kriterien (fachliche und außerfachliche) finden die Lernenden selbst (oder nutzen eine Hilfe) und lernen, Argumente abzuwägen und abschließend zu urteilen. Der methodische Fokus liegt in der Förderung der Bewertungskompetenz der Schülerinnen und Schüler.
Als Lernprodukt entsteht ein schriftlicher Text auf einem Feedbackformular, die die begründete und kriterienorientierte Entscheidung darlegt.
Dieses OER-Material und weiteres Material der iMINT-Akademie Berlin gibt es unter:
https://bildungsserver.berlin-brandenburg.de/unterricht/faecher/mathematik-naturwissenschaften/mint/i-mint-akademie/weiterfuehrende-schulen/fachset-physik-1

Zur Übersicht Zum externen Weblink
Weblink

Diese Lernaufgabe der iMINT-Akademie Berlin zum übergreifenden Thema „Verbraucherbildung“ beschäftigt sich mit Fernsehern. Mit Hilfe eines Werbeflyers, eines Experiments zum Auflösungsvermögen des Auges und anderen Materialien kommen die Schülerinnen und Schüler zu einer begründeten Entscheidung, ob sie ein selbst gewähltes Gerät kaufen würden oder nicht. Die für eine umfassende Bewertung bzw. Beurteilung erforderlichen Kriterien (fachliche und außerfachliche) finden die Lernenden selbst (oder nutzen eine Hilfe) und lernen, Argumente abzuwägen und abschließend zu urteilen. Der methodische Fokus liegt in der Förderung der Bewertungskompetenz der Schülerinnen und Schüler.
Als Lernprodukt entsteht ein schriftlicher Text auf einem Feedbackformular, die die begründete und kriterienorientierte Entscheidung darlegt.
Dieses OER-Material und weiteres Material der iMINT-Akademie Berlin gibt es unter:
https://bildungsserver.berlin-brandenburg.de/unterricht/faecher/mathematik-naturwissenschaften/mint/i-mint-akademie/weiterfuehrende-schulen/fachset-physik-1

Zur Übersicht Zum externen Weblink

Unterrichtsmodul: Zusammensetzung und Zerlegung des weißen Lichts

Weblink

Das vorliegende Unterrichtsmodul der iMINT-Akademie Berlin enthält Materialien zu zahlreichen Demonstrations- und Schülerexperimenten im Kontext Licht, Sehen von Farben, Zerlegung weißen Lichts in Spektralfarben und zum Farbspektrum. Hierbei kommen nicht nur klassische Geräte des Physikunterrichts zum Einsatz, sondern auch Smartphones sowie innovative und preiswerte LED-Gerätesätze. Lernvideos zur Farbwahrnehmung im Auge und zur Darstellung von Farben in elek¬tronischen Geräten ergänzen das Material.
Das Unterrichtsmaterial unterstützt die Kompetenzentwicklung in den Bereichen Fachwissen, Erkenntnisgewinnung, Kommunikation und Bewerten.
Dieses OER-Material und weiteres Material der iMINT-Akademie Berlin gibt es unter:
https://bildungsserver.berlin-brandenburg.de/unterricht/faecher/mathematik-naturwissenschaften/mint/i-mint-akademie/weiterfuehrende-schulen/fachset-physik-1

Zur Übersicht Zum externen Weblink
Weblink

Das vorliegende Unterrichtsmodul der iMINT-Akademie Berlin enthält Materialien zu zahlreichen Demonstrations- und Schülerexperimenten im Kontext Licht, Sehen von Farben, Zerlegung weißen Lichts in Spektralfarben und zum Farbspektrum. Hierbei kommen nicht nur klassische Geräte des Physikunterrichts zum Einsatz, sondern auch Smartphones sowie innovative und preiswerte LED-Gerätesätze. Lernvideos zur Farbwahrnehmung im Auge und zur Darstellung von Farben in elek¬tronischen Geräten ergänzen das Material.
Das Unterrichtsmaterial unterstützt die Kompetenzentwicklung in den Bereichen Fachwissen, Erkenntnisgewinnung, Kommunikation und Bewerten.
Dieses OER-Material und weiteres Material der iMINT-Akademie Berlin gibt es unter:
https://bildungsserver.berlin-brandenburg.de/unterricht/faecher/mathematik-naturwissenschaften/mint/i-mint-akademie/weiterfuehrende-schulen/fachset-physik-1

Zur Übersicht Zum externen Weblink

Lärmorama

Weblink

Lärmorama ist eine interaktive, modular aufgebaute Plattform rund ums Thema Lärm. Lass dich dort mit Informationen und vor allem vielen Hörbeispielen, Bildern, Berechnungswerkzeugen und Spielen in die Welt des Lärms entführen.

Zur Übersicht Zum externen Weblink
Weblink

Lärmorama ist eine interaktive, modular aufgebaute Plattform rund ums Thema Lärm. Lass dich dort mit Informationen und vor allem vielen Hörbeispielen, Bildern, Berechnungswerkzeugen und Spielen in die Welt des Lärms entführen.

Zur Übersicht Zum externen Weblink

Akustik-Gehör-Psychoakustik

Weblink

Eine gute, von eingängigen Beispielen gestützte, Einführung von Martina Kremer in das oft vernachlässigte Thema Akustik.

Zur Übersicht Zum externen Weblink
Weblink

Eine gute, von eingängigen Beispielen gestützte, Einführung von Martina Kremer in das oft vernachlässigte Thema Akustik.

Zur Übersicht Zum externen Weblink

Tempolimit Lichtgeschwindigkeit

Weblink

Visualisierung und Veranschaulichung der Relativitätstheorie. Online-Artikel, Bilder, Filme und Bastelbögen von Ute Kraus und Corvin Zahn (Institut für Physik, Universität Hildesheim).

Zur Übersicht Zum externen Weblink
Weblink

Visualisierung und Veranschaulichung der Relativitätstheorie. Online-Artikel, Bilder, Filme und Bastelbögen von Ute Kraus und Corvin Zahn (Institut für Physik, Universität Hildesheim).

Zur Übersicht Zum externen Weblink

Warum vertauscht ein Spiegel links und rechts?

Weblink

Warum vertauscht ein Spiegel links und rechts aber nicht oben und unten?

Zur Übersicht Zum externen Weblink
Weblink

Warum vertauscht ein Spiegel links und rechts aber nicht oben und unten?

Zur Übersicht Zum externen Weblink

Lichtbrechung und Form Teil 1

Weblink

Ein Onlinespiel, bei dem man die Form von Glasstücken so schleifen muss, das die Lichtstrahlen einen bestimmten Punkt treffen (paralleles Licht in konvergentes Licht).

Zur Übersicht Zum externen Weblink
Weblink

Ein Onlinespiel, bei dem man die Form von Glasstücken so schleifen muss, das die Lichtstrahlen einen bestimmten Punkt treffen (paralleles Licht in konvergentes Licht).

Zur Übersicht Zum externen Weblink

Lichtbrechung und Form Teil 2

Weblink

Ein Onlinespiel, bei dem man die Form von Glasstücken so schleifen muss, das die Lichtstrahlen parallel verlaufen (konvergentes Licht in paralleles Licht).

Zur Übersicht Zum externen Weblink
Weblink

Ein Onlinespiel, bei dem man die Form von Glasstücken so schleifen muss, das die Lichtstrahlen parallel verlaufen (konvergentes Licht in paralleles Licht).

Zur Übersicht Zum externen Weblink

Masterarbeit mit Schülerversuchen aus dem Bereich Optik

Weblink

Die Masterarbeit von Britta Nowostawski beschäftigt sich mit Schülerversuchen aus dem Bereich Optik. Zentraler Bestandteil ist ein Versuch zum Regensensor.

Zur Übersicht Zum externen Weblink
Weblink

Die Masterarbeit von Britta Nowostawski beschäftigt sich mit Schülerversuchen aus dem Bereich Optik. Zentraler Bestandteil ist ein Versuch zum Regensensor.

Zur Übersicht Zum externen Weblink

Eine kurze Geschichte der Streuversuche

Weblink

Auf der sehr gut verständlichen und hervorragend gestalteten Site: "Welt der Physik" der Deutschen Physikalischen Gesellschaft (DPG) kannst du einen Übersichtsartikel über die Geschichte der Streuversuche nachlesen.

Zur Übersicht Zum externen Weblink
Weblink

Auf der sehr gut verständlichen und hervorragend gestalteten Site: "Welt der Physik" der Deutschen Physikalischen Gesellschaft (DPG) kannst du einen Übersichtsartikel über die Geschichte der Streuversuche nachlesen.

Zur Übersicht Zum externen Weblink

Spezielle Relativitätstheorie - Harald Lesch

Weblink

In diesem 30-minütigen Video bietet Harald Lesch eine gute Einführung in die Spezielle Relativitätstheorie.

Zur Übersicht Zum externen Weblink
Weblink

In diesem 30-minütigen Video bietet Harald Lesch eine gute Einführung in die Spezielle Relativitätstheorie.

Zur Übersicht Zum externen Weblink

Was ist Absorption?

Weblink

Ein filmischer Beitrag von "Engelchen und Teufelchen" von der Schule für Gestaltung Berufskolleg Foto- und Medientechnik zum Videowettbewerb von Leifiphysik.

Zur Übersicht Zum externen Weblink
Weblink

Ein filmischer Beitrag von "Engelchen und Teufelchen" von der Schule für Gestaltung Berufskolleg Foto- und Medientechnik zum Videowettbewerb von Leifiphysik.

Zur Übersicht Zum externen Weblink

Lichtbündelung Kurzfilm

Weblink

Ein filmischer Beitrag von "21th Century w/o fox" von der Schule für Gestaltung Berufskolleg Foto- und Medientechnik zum Videowettbewerb von Leifiphysik.

Zur Übersicht Zum externen Weblink
Weblink

Ein filmischer Beitrag von "21th Century w/o fox" von der Schule für Gestaltung Berufskolleg Foto- und Medientechnik zum Videowettbewerb von Leifiphysik.

Zur Übersicht Zum externen Weblink

1. Platz LEIFIphysik: Quantenphysik: Der Tunneleffekt

Weblink

Ein filmischer Beitrag von "Studio 16" vom Carl-Friedrich-von-Weizsäcker-Gymnasium Barmstedt/Rantzau für den LEIFIphysik-Videowettbewerb.

Zur Übersicht Zum externen Weblink
Weblink

Ein filmischer Beitrag von "Studio 16" vom Carl-Friedrich-von-Weizsäcker-Gymnasium Barmstedt/Rantzau für den LEIFIphysik-Videowettbewerb.

Zur Übersicht Zum externen Weblink

Zeitdilatation

Weblink

Ein filmischer Beitrag von "Die Albert Dreisteins" vom Helmut-Schmidt-Gymnasium für den LEIFIphysik-Videowettbewerb.

Zur Übersicht Zum externen Weblink
Weblink

Ein filmischer Beitrag von "Die Albert Dreisteins" vom Helmut-Schmidt-Gymnasium für den LEIFIphysik-Videowettbewerb.

Zur Übersicht Zum externen Weblink

Licht und Farben

Weblink

Ein filmischer Beitrag von "Coloursisters" vom Maria-Ward-Gymnasium Nürnberg für den LEIFIphysik-Videowettbewerb.

Zur Übersicht Zum externen Weblink
Weblink

Ein filmischer Beitrag von "Coloursisters" vom Maria-Ward-Gymnasium Nürnberg für den LEIFIphysik-Videowettbewerb.

Zur Übersicht Zum externen Weblink

Entstehung eines Regenbogens

Weblink

Ein filmischer Beitrag von "P-Seminar Physik - EasyShowPhysics" vom Apian-Gymnasium Ingolstadt für den LEIFIphysik-Videowettbewerb.

Zur Übersicht Zum externen Weblink
Weblink

Ein filmischer Beitrag von "P-Seminar Physik - EasyShowPhysics" vom Apian-Gymnasium Ingolstadt für den LEIFIphysik-Videowettbewerb.

Zur Übersicht Zum externen Weblink

Vom Lichtbündel zum Lichtstrahl

Weblink

Das Video zeigt, wie aus einem divergenten Lichtbündel modellhaft ein Lichtstrahl ein erzeugt wird.

Zur Übersicht Zum externen Weblink
Weblink

Das Video zeigt, wie aus einem divergenten Lichtbündel modellhaft ein Lichtstrahl ein erzeugt wird.

Zur Übersicht Zum externen Weblink

Atomphysik für die Sekundarstufe I

Weblink

Eine 9 Stunden umfassende Unterrichtseinheit zur Atomvorstellung für die Sekundarstufe I. Sie wurde am Faust-Gymnasium in Staufen entwickelt und in zehnten Klassen erprobt.

Zur Übersicht Zum externen Weblink
Weblink

Eine 9 Stunden umfassende Unterrichtseinheit zur Atomvorstellung für die Sekundarstufe I. Sie wurde am Faust-Gymnasium in Staufen entwickelt und in zehnten Klassen erprobt.

Zur Übersicht Zum externen Weblink

Karlsruher Wolkenatlas

Weblink

Im Karlsruher Wolkenatlas werden die verschiedenen Wolkenarten anhand zahlreicher Fotografien vorgestellt. Auch etliche optische Erscheinungen (z.B. Zirkumzenitalbögen, Glorien, Halos) finden Berücksichtigung.

Zur Übersicht Zum externen Weblink
Weblink

Im Karlsruher Wolkenatlas werden die verschiedenen Wolkenarten anhand zahlreicher Fotografien vorgestellt. Auch etliche optische Erscheinungen (z.B. Zirkumzenitalbögen, Glorien, Halos) finden Berücksichtigung.

Zur Übersicht Zum externen Weblink

Arbeitskreis Meteore e.V.

Weblink

Der Arbeitskreis Meteore e.V. beschäftigt sich mit der Beobachtung und Auswertung von Meteoren, Halos, Polarlichtern, Leuchtenden Nachtwolken und anderen Erscheinungen der Erdatmosphäre.

Zur Übersicht Zum externen Weblink
Weblink

Der Arbeitskreis Meteore e.V. beschäftigt sich mit der Beobachtung und Auswertung von Meteoren, Halos, Polarlichtern, Leuchtenden Nachtwolken und anderen Erscheinungen der Erdatmosphäre.

Zur Übersicht Zum externen Weblink

Wie funktioniert ein Fernrohr?

Weblink

Erklärvideo mit Konstruktion des Strahlenganges

Zur Übersicht Zum externen Weblink
Weblink

Erklärvideo mit Konstruktion des Strahlenganges

Zur Übersicht Zum externen Weblink

Einsteinzug

Weblink

Eine interaktive Animation zur Speziellen Relativitätstheorie
Der Betrachter kann den Bezugspunkt und das jeweilige Zeitverständis selbst bestimmen.

Zur Übersicht Zum externen Weblink
Weblink

Eine interaktive Animation zur Speziellen Relativitätstheorie
Der Betrachter kann den Bezugspunkt und das jeweilige Zeitverständis selbst bestimmen.

Zur Übersicht Zum externen Weblink

FAST so schnell wie das Licht

Weblink

Computersimulationen zum Durchflug durch ein stilisiertes Brandenburger Tor mit unterschiedlichen Geschwindigkeiten (0,01c / 0,5 c / 0,9 c / 0,95c / 0,99 c) als Videos zum Herunterladen. Verlinkt sind interaktive Messtools mit denen die Koordinaten markanter Punkte bestimmt werden können.

Zur Übersicht Zum externen Weblink
Weblink

Computersimulationen zum Durchflug durch ein stilisiertes Brandenburger Tor mit unterschiedlichen Geschwindigkeiten (0,01c / 0,5 c / 0,9 c / 0,95c / 0,99 c) als Videos zum Herunterladen. Verlinkt sind interaktive Messtools mit denen die Koordinaten markanter Punkte bestimmt werden können.

Zur Übersicht Zum externen Weblink

Grundlagen der LCD-Technologie

Weblink

Das Kompendium erläutert anschaulich die Grundlagen verschiedener LCD-Technologien. Dabei werden neben einfachen Twisted Nematic Zellen auch technische Aspekte wie In Plane Switching (IPS) und Overdrive thematisiert.

Zum externen Weblink
Weblink

Das Kompendium erläutert anschaulich die Grundlagen verschiedener LCD-Technologien. Dabei werden neben einfachen Twisted Nematic Zellen auch technische Aspekte wie In Plane Switching (IPS) und Overdrive thematisiert.

Zum externen Weblink

Optische Phänomene bei Sonnenuntergängen

Weblink

Die englischsprachige Seite bietet einen guten Überblick mit sehr vielen Bildern und Bilderserien über Phänomene der Atmosphärenoptik - von Regebögen über Sonnenuntergänge und Himmelsblau bis hin zu Halos.

Zum externen Weblink
Weblink

Die englischsprachige Seite bietet einen guten Überblick mit sehr vielen Bildern und Bilderserien über Phänomene der Atmosphärenoptik - von Regebögen über Sonnenuntergänge und Himmelsblau bis hin zu Halos.

Zum externen Weblink

Potentialtopf-Modell

Weblink

Dieses downloadbare (Windows-)Programm zeigt, wie sich ein Elektron verhält, das in einen sehr kleinen würfelförmigen Kasten eingesperrt wird.
In der Quantenphysik wird dieser Kasten als dreidimensionaler Potentialtopf interpretiert, in dem das Elektron nur ganz bestimmte Energieniveaus annehmen kann. Außerdem darf das Elektron sich nur in bestimmten Raumbereichen aufhalten. Etwas physikalischer formuliert: Die Energie des Elektrons innerhalb des Potentialtopfes ist gequantelt und sein Aufenthaltsbereich ist auf Orbitale beschränkt. Dieses Verhalten des Elektrons ergibt sich aus der Schrödinger-Gleichung. Die Simulation erlaubt die Eingabe verschiedener Quantenzahlen. Die Aufenthaltswahrscheinlichkeit des Elektrons (Orbital) wird durch die Dichte von Punktewolken dargestellt. Der Würfel lässt sich drehen, so dass die Lage der einzelnen Orbitale gut sichtbar wird. Außerdem kann man die Energie des Elektrons bei vorgegebener Größe des Kastens ablesen.

Zur Übersicht Zum externen Weblink
Weblink

Dieses downloadbare (Windows-)Programm zeigt, wie sich ein Elektron verhält, das in einen sehr kleinen würfelförmigen Kasten eingesperrt wird.
In der Quantenphysik wird dieser Kasten als dreidimensionaler Potentialtopf interpretiert, in dem das Elektron nur ganz bestimmte Energieniveaus annehmen kann. Außerdem darf das Elektron sich nur in bestimmten Raumbereichen aufhalten. Etwas physikalischer formuliert: Die Energie des Elektrons innerhalb des Potentialtopfes ist gequantelt und sein Aufenthaltsbereich ist auf Orbitale beschränkt. Dieses Verhalten des Elektrons ergibt sich aus der Schrödinger-Gleichung. Die Simulation erlaubt die Eingabe verschiedener Quantenzahlen. Die Aufenthaltswahrscheinlichkeit des Elektrons (Orbital) wird durch die Dichte von Punktewolken dargestellt. Der Würfel lässt sich drehen, so dass die Lage der einzelnen Orbitale gut sichtbar wird. Außerdem kann man die Energie des Elektrons bei vorgegebener Größe des Kastens ablesen.

Zur Übersicht Zum externen Weblink

Tunneleffekt

Weblink

Dieses downloadbare (Windows-)Programm löst die eindimensionale, stationäre Schrödingergleichung für den Aufenthalt eines Elektrons in einem Linearen Potentialtopf auf numerischem Weg.
Dabei lassen sich drei Szenarien einstellen:
1. Linearer Potentialtopf mit unendlich hohen Wänden
2. Linearer Potentialtopf mit einer niedrigen, aber breiten Wand
3. Linearer Potentialtopf mit einer niedrigen und schmalen Wand.
Die Höhe (Potentielle Energie) und die Breite der Wand lassen sich bei 2. und 3. variieren.
Durch Eingabe der Gesamtenergie des Elektrons lassen sich Wellenfunktionen finden, die innerhalb der Wand gegen Null konvergieren. Nur diese Wellenfunktionen sind physikalisch sinnvoll und beschreiben das Eindringen in die Wand bzw. das Durchtunneln der Wand im Sinne des quantenmechanischen Effekts richtig.

Zur Übersicht Zum externen Weblink
Weblink

Dieses downloadbare (Windows-)Programm löst die eindimensionale, stationäre Schrödingergleichung für den Aufenthalt eines Elektrons in einem Linearen Potentialtopf auf numerischem Weg.
Dabei lassen sich drei Szenarien einstellen:
1. Linearer Potentialtopf mit unendlich hohen Wänden
2. Linearer Potentialtopf mit einer niedrigen, aber breiten Wand
3. Linearer Potentialtopf mit einer niedrigen und schmalen Wand.
Die Höhe (Potentielle Energie) und die Breite der Wand lassen sich bei 2. und 3. variieren.
Durch Eingabe der Gesamtenergie des Elektrons lassen sich Wellenfunktionen finden, die innerhalb der Wand gegen Null konvergieren. Nur diese Wellenfunktionen sind physikalisch sinnvoll und beschreiben das Eindringen in die Wand bzw. das Durchtunneln der Wand im Sinne des quantenmechanischen Effekts richtig.

Zur Übersicht Zum externen Weblink